Skip to main content

Build reactive back end with ease

Project description

flask-boiler

Build Status Coverage Status Documentation Status

"boiler": Backend-Originated Instantly-Loaded Entity Repository

Flask-boiler manages your application state with Firestore. You can create view models that aggregates underlying data sources and store them immediately and permanently in Firestore. As a result, your front end development will be as easy as using Firestore. Flask-boiler is comparable to Spring Web Reactive.

Demo:

When you change the attendance status of one of the participants in the meeting, all other participants receive an updated version of the list of people attending the meeting.

Untitled_2

Some reasons that you may want to use this framework:

  • The automatically documented API accelerates your development
  • You want to use Firestore to build your front end, but you have to give up because your data contains many relational reference
  • You want to move some business logic to back end
  • You are open to trying something new and contributing to a framework
  • You want to develop a new reactive service to your existing flask app

This framework is at beta testing stage. API is not guaranteed and may change.

Documentations: readthedocs

Quickstart: Quickstart

API Documentations: API Docs

Example of a Project using flask-boiler: gravitate-backend

Installation

In your project's requirements.txt,


# Append to requirements, unless repeating existing requirements

google-cloud-firestore
flask-boiler  # Not released to pypi yet 

Configure virtual environment

pip install virtualenv
virtualenv env
source env/bin/activate

In your project directory,

pip install -r requirements.txt

See more in Quickstart.

State Management

You can combine information gathered in domain models and serve them in Firestore, so that front end can read all data required from a single document or collection, without client-side queries and excessive server roundtrip time.

There is a medium article that explains a similar architecture called "reSolve" architecture.

See examples/meeting_room/view_models on how to use flask-boiler to expose a "view model" in firestore that can be queried directly by front end without aggregation.

Save data

def CityBase(DomainModel):
    _collection_name = "cities"
    
class City(CityBase):
    _schema_cls = CitySchema 
    
City.new(
        doc_id='SF',
        name='San Francisco',
        state='CA', 
        country='USA', 
        capital=False, 
        populations=860000,
        regions=['west_coast', 'norcal']).save()

# ...

Relationship

Flask-boiler adds an option to retrieve a relation with minimal steps. Take an example given from SQLAlchemy,

category_id = utils.random_id()
py = Category.new(doc_id=category_id)
py.name = "Python"

post_id = utils.random_id()
p = Post.new(doc_id=post_id)
p.title = "snakes"
p.body = "Ssssssss"

# py.posts.append(p)
p.category = py

p.save()

See examples/relationship_example.py

Context Management

In __init__ of your project source root:

import os

from flask_boiler import context
from flask_boiler import config

Config = config.Config

testing_config = Config(app_name="your_app_name",
                        debug=True,
                        testing=True,
                        certificate_path=os.path.curdir + "/../your_project/config_jsons/your_certificate.json")

CTX = context.Context
CTX.read(testing_config)

Note that initializing Config with certificate_path is unstable and may be changed later.

In your project code,

from flask_boiler import context

CTX = context.Context

# Retrieves firestore database instance 
CTX.db

# Retrieves firebase app instance 
CTX.firebase_app

Automatically Generated Swagger Docs

You can enable auto-generated swagger docs. See: examples/view_example.py

Create Flask View

You can create a flask view to specify how a view model is read and changed.

app = Flask(__name__)

meeting_session_mediator = view_mediator.ViewMediator(
    view_model_cls=MeetingSession,
    app=app,
    mutation_cls=MeetingSessionMutation
)
meeting_session_mediator.add_list_get(
    rule="/meeting_sessions",
    list_get_view=meeting_session_ops.ListGet
)

meeting_session_mediator.add_instance_get(
    rule="/meeting_sessions/<string:doc_id>")
meeting_session_mediator.add_instance_patch(
    rule="/meeting_sessions/<string:doc_id>")

user_mediator = view_mediator.ViewMediator(
    view_model_cls=UserView,
    app=app,
)
user_mediator.add_instance_get(
    rule="/users/<string:doc_id>"
)

swagger = Swagger(app)

app.run(debug=True)

Object Lifecycle

Once

Object created with cls.new -> Object exported with obj.to_view_dict.

Multi

Object created when a new domain model is created in database -> Object changed when underlying datasource changes -> Object calls self.notify

Advantages

Decoupled Domain Model and View Model

Using Firebase Firestore sometimes require duplicated fields across several documents in order to both query the data and display them properly in front end. Flask-boiler solves this problem by decoupling domain model and view model. View model are generated and refreshed automatically as domain model changes. This means that you will only have to write business logics on the domain model without worrying about how the data will be displayed. This also means that the View Models can be displayed directly in front end, while supporting real-time features of Firebase Firestore.

One-step Configuration

Rather than configuring the network and different certificate settings for your database and other cloud services. All you have to do is to enable related services on Google Cloud Console, and add your certificate. Flask-boiler configures all the services you need, and expose them as a singleton Context object across the project.

Redundancy

Since all View Models are persisted in Firebase Firestore. Even if your App Instance is offline, the users can still access a view of the data from Firebase Firestore. Every View is also a Flask View, so you can also access the data with auto-generated REST API, in case Firebase Firestore is not viable.

Added Safety

By separating business data from documents that are accessible to the front end, you have more control over which data is displayed depending on the user's role.

One-step Documentation

All ViewModels have automatically generated documentations (provided by Flasgger). This helps AGILE teams keep their documentations and actual code in sync.

Fully-extendable

When you need better performance or relational database support, you can always refactor a specific layer by adding modules such as flask-sqlalchemy.

Comparisons

GraphQL

In GraphQL, the fields are evaluated with each query, but flask-boiler evaluates the fields if and only if the underlying data source changes. This leads to faster read for data that has not changed for a while. Also, the data source is expected to be consistent, as the field evaluation are triggered after all changes made in one transaction to firestore is read.

GraphQL, however, lets front-end customize the return. You must define the exact structure you want to return in flask-boiler. This nevertheless has its advantage as most documentations of the request and response can be done the same way as REST API.

REST API / Flask

REST API does not cache or store the response. When a view model is evaluated by flask-boiler, the response is stored in firestore forever until update or manual removal.

Flask-boiler controls role-based access with security rules integrated with Firestore. REST API usually controls these access with a JWT token.

Redux

Redux is implemented mostly in front end. Flask-boiler targets back end and is more scalable, since all data are communicated with Firestore, a infinitely scalable NoSQL datastore.

Flask-boiler is declarative, and Redux is imperative. The design pattern of REDUX requires you to write functional programming in domain models, but flask-boiler favors a different approach: ViewModel reads and calculates data from domain models and exposes the attribute as a property getter. (When writing to DomainModel, the view model changes domain model and exposes the operation as a property setter). Nevertheless, you can still add function callbacks that are triggered after a domain model is updated, but this may introduce concurrency issues and is not perfectly supported due to the design tradeoff in flask-boiler.

Architecture Diagram:

Architecture Diagram

Contributing

Pull requests are welcome.

Please make sure to update tests as appropriate.

License

MIT

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

flask_boiler-0.0.1b3.tar.gz (58.2 kB view details)

Uploaded Source

File details

Details for the file flask_boiler-0.0.1b3.tar.gz.

File metadata

  • Download URL: flask_boiler-0.0.1b3.tar.gz
  • Upload date:
  • Size: 58.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.20.0 setuptools/40.5.0 requests-toolbelt/0.9.1 tqdm/4.35.0 CPython/2.7.15

File hashes

Hashes for flask_boiler-0.0.1b3.tar.gz
Algorithm Hash digest
SHA256 c987144f4e076077986997c3ef689368c2432d15c91e5ed6261148602d93682e
MD5 abe9eb8866700538a5d801c7debf342c
BLAKE2b-256 3ad936f613edfbe3b3c352374f874c173a77e9dae1b841bc1e7e887174f81ff8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page