Skip to main content

This pacakge contains basic routines for Laplace, Helmholtz, Stokes and Maxwell fast multipole methods in three dimensions

Project description

Flatiron Institute Fast Multipole Libraries

This codebase is a set of libraries to compute N-body interactions governed by the Laplace and Helmholtz equations, to a specified precision, in three dimensions, on a multi-core shared-memory machine.

Please see the online documentation, or its equivalent user manual.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

fmm3dpy-1.0.0-cp311-cp311-win_amd64.whl (7.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

fmm3dpy-1.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

fmm3dpy-1.0.0-cp311-cp311-macosx_10_9_universal2.whl (6.0 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

fmm3dpy-1.0.0-cp310-cp310-win_amd64.whl (7.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

fmm3dpy-1.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

fmm3dpy-1.0.0-cp310-cp310-macosx_10_9_universal2.whl (6.0 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

fmm3dpy-1.0.0-cp39-cp39-win_amd64.whl (6.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

fmm3dpy-1.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

fmm3dpy-1.0.0-cp39-cp39-macosx_10_9_x86_64.whl (8.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

fmm3dpy-1.0.0-cp38-cp38-win_amd64.whl (6.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

fmm3dpy-1.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

fmm3dpy-1.0.0-cp38-cp38-macosx_10_9_x86_64.whl (8.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

fmm3dpy-1.0.0-cp37-cp37m-win_amd64.whl (6.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

fmm3dpy-1.0.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

fmm3dpy-1.0.0-cp37-cp37m-macosx_10_9_x86_64.whl (8.4 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

fmm3dpy-1.0.0-cp36-cp36m-win_amd64.whl (6.9 MB view details)

Uploaded CPython 3.6m Windows x86-64

fmm3dpy-1.0.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

fmm3dpy-1.0.0-cp36-cp36m-macosx_10_9_x86_64.whl (8.4 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file fmm3dpy-1.0.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: fmm3dpy-1.0.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 7.0 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.16

File hashes

Hashes for fmm3dpy-1.0.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 74c6cd667e7577f1c57aadf21ab11a941032592969e0de27c43266ffcb5886c2
MD5 e949382455129a6f8fc983f67e387827
BLAKE2b-256 c935422a9d756ac35a2b48aeac5535d55c979638beb084d8e8db2e48330b6827

See more details on using hashes here.

File details

Details for the file fmm3dpy-1.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fmm3dpy-1.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 41f0341a44503d3a13fea3ee39a9ec6f7a1d3eaeea5db505566ef5b8ad2fddec
MD5 957dac4016521e2805f18cbd3031b58d
BLAKE2b-256 78fed5da62838cdf05e311f56a9a24f40b77b72c88465741b85a07064ecad7e7

See more details on using hashes here.

File details

Details for the file fmm3dpy-1.0.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

  • Download URL: fmm3dpy-1.0.0-cp311-cp311-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 6.0 MB
  • Tags: CPython 3.11, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.16

File hashes

Hashes for fmm3dpy-1.0.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 062c716021b0545c858a5af044a7e700aedf44cae81d78a5b2f76553ac470cde
MD5 3195b0678e4f088a9e5faa06fe16b2ed
BLAKE2b-256 04db9287ed7ceff49143c3df3f3cbd1fdae313c98644eff20bb33deca16ba6b8

See more details on using hashes here.

File details

Details for the file fmm3dpy-1.0.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: fmm3dpy-1.0.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 7.0 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.16

File hashes

Hashes for fmm3dpy-1.0.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 6bf213741ab69286320dd8484d65c694e7cab9e3dda21f07701796ab13a68a6a
MD5 b1f31ab00ddc48ce327adb3b480cdac9
BLAKE2b-256 557af048f884480ed2f71692174f79b41f3e64f215217bfd94a75bb0c9eddd26

See more details on using hashes here.

File details

Details for the file fmm3dpy-1.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fmm3dpy-1.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 478bf25e248981c176d2d800e3fb23b7347e269c8a97d95bba48bd57e0975e3d
MD5 d443838d3e8827941f2a6e4739dc53ee
BLAKE2b-256 6eab11fc9152210fcac2c0429fd259deef84915e42723b570823cf644b604a61

See more details on using hashes here.

File details

Details for the file fmm3dpy-1.0.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

  • Download URL: fmm3dpy-1.0.0-cp310-cp310-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 6.0 MB
  • Tags: CPython 3.10, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.16

File hashes

Hashes for fmm3dpy-1.0.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 770d0161989c6292ece835ad4b367548e3a1b0a352b31b914e9829666f797d63
MD5 6a7890752afc91bcadcfa02ae14e96f8
BLAKE2b-256 94ea54ed1f3b280b4d18700aac056406fbd2d02464a171cb6dbae7414f4d70ec

See more details on using hashes here.

File details

Details for the file fmm3dpy-1.0.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: fmm3dpy-1.0.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 6.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0

File hashes

Hashes for fmm3dpy-1.0.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1dc3e1fdef9c158baed7ff2c66bfecdb3cb4728dca78648022eb5bf191b74037
MD5 cda448842ead9870b470de22a7f2ca27
BLAKE2b-256 aa3a94e68ba5690c069810caa2285052c6444c43bf55de04ed7df68d9842500d

See more details on using hashes here.

File details

Details for the file fmm3dpy-1.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fmm3dpy-1.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 df9190e42f774ff4d25997c01e848614a19ea3727da59a528ac1d3a2a07b5238
MD5 0b2c442dd0f9d26ac49bb914b893974e
BLAKE2b-256 bcc9d537e3cdb50dd864d3d9320a618c3ac1b47512a9bc494d48870c4a2961f8

See more details on using hashes here.

File details

Details for the file fmm3dpy-1.0.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: fmm3dpy-1.0.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 8.4 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0

File hashes

Hashes for fmm3dpy-1.0.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f5c58e42a0ccfc94a1b7d5599be74fc959f1654555a4b9f61a248befb7ce6292
MD5 58c985d276fa3a1034dc99538c2d65b1
BLAKE2b-256 d3927e9555d513832d759e6e37e100129affdff7ca2030afc7f2fe61858e408a

See more details on using hashes here.

File details

Details for the file fmm3dpy-1.0.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: fmm3dpy-1.0.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 6.8 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0

File hashes

Hashes for fmm3dpy-1.0.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 44ab42656cf33fc2f8171e2f3d2d33d18bb9da1c6284f5526ad73bf561800dcb
MD5 1090b33adc3b9796b17da7669ddaae1d
BLAKE2b-256 2090ce4b3434eb90305e7109d718bbeb611a6e678411b40861440afa9f872e75

See more details on using hashes here.

File details

Details for the file fmm3dpy-1.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fmm3dpy-1.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0cdd29b62ec5b23f4960f34b0571749ce1903d98d8793427070fbc637e3dd043
MD5 a1bf2a1be28981ac1e226c4ef0cffa30
BLAKE2b-256 71e8bb6986d94449719c7cd353eb3553bbaaf843cfedde7537f1f252c80c700d

See more details on using hashes here.

File details

Details for the file fmm3dpy-1.0.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: fmm3dpy-1.0.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 8.4 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0

File hashes

Hashes for fmm3dpy-1.0.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1abfd4421d006c6d68954a770eaa775f45fa469e68d1b259653c01be9c90b173
MD5 ab480b1c772d57d09cc7bd426f7a12ff
BLAKE2b-256 5469f4d1c01d22ba9daf402d9ca054d7cec97e22f372fc14681ac9fa6fcf8caa

See more details on using hashes here.

File details

Details for the file fmm3dpy-1.0.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: fmm3dpy-1.0.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 6.9 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0

File hashes

Hashes for fmm3dpy-1.0.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 49cb5e29ec3430d5723e5ab06dfd410885ca23ba63f4b5c946f3649eb6479268
MD5 a3f322a67024003bf78ce8be24344319
BLAKE2b-256 e7bb1d591df398bbfd0c3131fdfbf134a7d9845e7e5b1f264db50fe2377c0b53

See more details on using hashes here.

File details

Details for the file fmm3dpy-1.0.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fmm3dpy-1.0.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7f117c4c8dfd18f59b49ce9052db31b8e7e18665552c9d29114085b9425d16f3
MD5 7022ab812d85255633f041afd1bbae9c
BLAKE2b-256 441c4551e1a463073720d5ab2443a6e511b2fa7c5c2995e8d894089f2c721050

See more details on using hashes here.

File details

Details for the file fmm3dpy-1.0.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: fmm3dpy-1.0.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 8.4 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0

File hashes

Hashes for fmm3dpy-1.0.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ac1f3099f7785d057125f03e60996cc9f6484d6eb4a45c69808728078e1d23e4
MD5 6ce881214a58d92e9284a29518287215
BLAKE2b-256 65998f4edbacbe74a5a4bf2961d4b4ac9019b1ae55cc0a4ef8ea6462318f5707

See more details on using hashes here.

File details

Details for the file fmm3dpy-1.0.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: fmm3dpy-1.0.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 6.9 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0

File hashes

Hashes for fmm3dpy-1.0.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 625c6aea341e4086e9294eb7d31043ea3e96a16a8acf7308824bc96abd3fc23a
MD5 5da4f77b44442da638024ed2f5c7561b
BLAKE2b-256 5883b390b55ca2bf33121c77c319c025fa16f5d62a30642d776b5423c5c9a963

See more details on using hashes here.

File details

Details for the file fmm3dpy-1.0.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fmm3dpy-1.0.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 376a33f6ca871bf076b5f9a931ccdff2e413b5957912ee943fbd5a942ed8694c
MD5 243c7aae3f5458d8f848f75c7f647cd9
BLAKE2b-256 a248a9df06d68a26cf35fb17491fbfa83ee8b067ab1c57fd4fe24e577aa0e019

See more details on using hashes here.

File details

Details for the file fmm3dpy-1.0.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: fmm3dpy-1.0.0-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 8.4 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0

File hashes

Hashes for fmm3dpy-1.0.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 efe18c71a5f2fae5521cbb7c08f9085cedbcc70ad08df6c291defacc068de0a7
MD5 9378666caf4f2a93c115907d7d3ff549
BLAKE2b-256 b21dee1245f75481eb10413a0861e4a2ed4c1afb1b6376b72ec405e60f0f532b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page