Skip to main content

Foldcomp compresses protein structures with torsion angles effectively. It compresses the backbone atoms to 8 bytes and the side chain to additionally 4-5 byes per residue, an averaged-sized protein of 350 residues requires ~4.2kb. Foldcomp is a C++ library with Python bindings.

Project description

Foldcomp

Foldcomp compresses protein structures with torsion angles effectively. It compresses the backbone atoms to 8 bytes and the side chain to additionally 4-5 byes per residue, thus an averaged-sized protein of 350 residues requires ~6kb.

Foldcomp efficient compressed format stores protein structures requiring only 13 bytes per residue, which reduces the required storage space by an order of magnitude compared to saving 3D coordinates directly. We achieve this reduction by encoding the torsion angles of the backbone as well as the side-chain angles in a compact binary file format (FCZ).

Foldcomp currently only supports compression of single chain PDB files


Left panel: Foldcomp data format, saving amino acid residue in 13 byte. Top right panel:  Foldcomp decompression is as fast as gzip. Bottom right panel: Foldcomp compression ratio is higher than pulchra and gzip.

Publications

Hyunbin Kim, Milot Mirdita, Martin Steinegger, Foldcomp: a library and format for compressing and indexing large protein structure sets, Bioinformatics, 2023;, btad153,

Usage

Installing Foldcomp

# Install Foldcomp Python package
pip install foldcomp

# Download static binaries for Linux
wget https://mmseqs.com/foldcomp/foldcomp-linux-x86_64.tar.gz

# Download static binaries for Linux (ARM64)
wget https://mmseqs.com/foldcomp/foldcomp-linux-arm64.tar.gz

# Download binary for macOS
wget https://mmseqs.com/foldcomp/foldcomp-macos-universal.tar.gz

# Download binary for Windows (x64)
wget https://mmseqs.com/foldcomp/foldcomp-windows-x64.zip

Executable

# Compression
foldcomp compress <pdb|cif> [<fcz>]
foldcomp compress [-t number] <dir|tar(.gz)> [<dir|tar|db>]

# Decompression
foldcomp decompress <fcz|tar> [<pdb>]
foldcomp decompress [-t number] <dir|tar(.gz)|db> [<dir|tar>]

# Decompressing a subset of Foldcomp database
foldcomp decompress [-t number] --id-list <idlist.txt> <db> [<dir|tar>]

# Extraction of sequence or pLDDT
foldcomp extract [--plddt|--amino-acid] <fcz> [<fasta>]
foldcomp extract [--plddt|--amino-acid] [-t number] <dir|tar(.gz)|db> [<fasta_out>]

# Check
foldcomp check <fcz>
foldcomp check [-t number] <dir|tar(.gz)|db>

# RMSD
foldcomp rmsd <pdb|cif> <pdb|cif>

# Options
 -h, --help           print this help message
 -v, --version        print version
 -t, --threads        threads for (de)compression of folders/tar files [default=1]
 -r, --recursive      recursively look for files in directory [default=0]
 -f, --file           input is a list of files [default=0]
 -a, --alt            use alternative atom order [default=false]
 -b, --break          interval size to save absolute atom coordinates [default=25]
 -z, --tar            save as tar file [default=false]
 -d, --db             save as database [default=false]
 -y, --overwrite      overwrite existing files [default=false]
 -l, --id-list        a file of id list to be processed (only for database input)
 --skip-discontinuous skip PDB with with discontinuous residues (only batch compression)
 --check              check FCZ before and skip entries with error (only for batch decompression)
 --plddt              extract pLDDT score (only for extraction mode)
 --fasta              extract amino acid sequence (only for extraction mode)
 --no-merge           do not merge output files (only for extraction mode)
 --time               measure time for compression/decompression

Downloading Databases

We offer prebuilt databases for multiple large sets of predicted protein structures and a Python helper to download the database files.

You can download the AlphaFoldDB Swiss-Prot with the following command:

python -c "import foldcomp; foldcomp.setup('afdb_swissprot_v4');

Currently we offer the following databases:

  • ESMAtlas full (v0 + v2023_02): foldcomp.setup('esmatlas')

  • ESMAtlas v2023_02: foldcomp.setup('esmatlas_v2023_02')

  • ESMAtlas high-quality: foldcomp.setup('highquality_clust30')

    Note: We skipped all structures with discontinous residues or other issues. Here is a list with the affected predictions; full (~21M), high-quality (~100k), v2023_02 (~10k)

  • AlphaFoldDB Uniprot: foldcomp.setup('afdb_uniprot_v4')

  • AlphaFoldDB Swiss-Prot: foldcomp.setup('afdb_swissprot_v4')

  • AlphaFoldDB Model Organisms: foldcomp.setup('h_sapiens')

    • a_thaliana, c_albicans, c_elegans, d_discoideum, d_melanogaster, d_rerio, e_coli, g_max, h_sapiens, m_jannaschii, m_musculus, o_sativa, r_norvegicus, s_cerevisiae, s_pombe, z_mays
  • AlphaFoldDB Cluster Representatives: foldcomp.setup('afdb_rep_v4')

  • AlphaFoldDB Cluster Representatives (Dark Clusters): foldcomp.setup('afdb_rep_dark_v4')

If you want other prebuilt datasets, please get in touch with us through our GitHub issues.

If you have issues downloading the databases you can navigate directly to our download server and download the required files. E.g. afdb_uniprot_v4, afdb_uniprot_v4.index, afdb_uniprot_v4.dbtype, afdb_uniprot_v4.lookup, and optionally afdb_uniprot_v4.source.

Python API

You can find more in-depth examples of using Foldcomp's Python interface in the example notebook: Open In Colab

import foldcomp
# 01. Handling a FCZ file
# Open a fcz file
with open("test/compressed.fcz", "rb") as fcz:
  fcz_binary = fcz.read()

  # Decompress
  (name, pdb) = foldcomp.decompress(fcz_binary) # pdb_out[0]: file name, pdb_out[1]: pdb binary string

  # Save to a pdb file
  with open(name, "w") as pdb_file:
    pdb_file.write(pdb)

  # Get data as dictionary
  data_dict = foldcomp.get_data(fcz_binary) # foldcomp.get_data(pdb) also works
  # Keys: phi, psi, omega, torsion_angles, residues, bond_angles, coordinates
  data_dict["phi"] # phi angles (C-N-CA-C)
  data_dict["psi"] # psi angles (N-CA-C-N)
  data_dict["omega"] # omega angles (CA-C-N-CA)
  data_dict["torsion_angles"] # torsion angles of the backbone as list (phi + psi + omega)
  data_dict["bond_angles"] # bond angles of the backbone as list
  data_dict["residues"] # amino acid residues as string
  data_dict["coordinates"] # coordinates of the backbone as list

# 02. Iterate over a database of FCZ files
# Open a foldcomp database
ids = ["d1asha_", "d1it2a_"]
with foldcomp.open("test/example_db", ids=ids) as db:
  # Iterate through database
  for (name, pdb) in db:
      # save entries as seperate pdb files
      with open(name + ".pdb", "w") as pdb_file:
        pdb_file.write(pdb)

Subsetting Databases

If you are dealing with millions of entries, we recommend using createsubdb command of mmseqs2 to subset databases. The following commands can be used to subset the AlphaFold Uniprot DB with given IDs.

# mmseqs createsubdb --subdb-mode 0 --id-mode 1 id_list.txt input_foldcomp_db output_foldcomp_db
mmseqs createsubdb --subdb-mode 0 --id-mode 1 id_list.txt afdb_uniprot_v4 afdb_subset

Please note that the IDs in afdb_uniprot_v4 are in the format AF-A0A5S3Y9Q7-F1-model_v4 .

Community Contributions

Contributor

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

foldcomp-0.0.7.tar.gz (21.0 kB view details)

Uploaded Source

Built Distributions

foldcomp-0.0.7-cp311-cp311-win_amd64.whl (154.3 kB view details)

Uploaded CPython 3.11 Windows x86-64

foldcomp-0.0.7-cp311-cp311-musllinux_1_1_x86_64.whl (798.0 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

foldcomp-0.0.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (266.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

foldcomp-0.0.7-cp311-cp311-macosx_10_9_x86_64.whl (248.0 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

foldcomp-0.0.7-cp311-cp311-macosx_10_9_universal2.whl (473.3 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

foldcomp-0.0.7-cp310-cp310-win_amd64.whl (154.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

foldcomp-0.0.7-cp310-cp310-musllinux_1_1_x86_64.whl (798.0 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

foldcomp-0.0.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (266.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

foldcomp-0.0.7-cp310-cp310-macosx_10_9_x86_64.whl (248.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

foldcomp-0.0.7-cp310-cp310-macosx_10_9_universal2.whl (473.3 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

foldcomp-0.0.7-cp39-cp39-win_amd64.whl (154.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

foldcomp-0.0.7-cp39-cp39-musllinux_1_1_x86_64.whl (798.0 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

foldcomp-0.0.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (266.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

foldcomp-0.0.7-cp39-cp39-macosx_10_9_x86_64.whl (248.0 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

foldcomp-0.0.7-cp39-cp39-macosx_10_9_universal2.whl (473.3 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

foldcomp-0.0.7-cp38-cp38-win_amd64.whl (154.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

foldcomp-0.0.7-cp38-cp38-musllinux_1_1_x86_64.whl (798.0 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

foldcomp-0.0.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (266.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

foldcomp-0.0.7-cp38-cp38-macosx_10_9_x86_64.whl (248.0 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

foldcomp-0.0.7-cp38-cp38-macosx_10_9_universal2.whl (473.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

foldcomp-0.0.7-cp37-cp37m-win_amd64.whl (154.2 kB view details)

Uploaded CPython 3.7m Windows x86-64

foldcomp-0.0.7-cp37-cp37m-musllinux_1_1_x86_64.whl (797.7 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

foldcomp-0.0.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (266.5 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

foldcomp-0.0.7-cp37-cp37m-macosx_10_9_x86_64.whl (248.2 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file foldcomp-0.0.7.tar.gz.

File metadata

  • Download URL: foldcomp-0.0.7.tar.gz
  • Upload date:
  • Size: 21.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for foldcomp-0.0.7.tar.gz
Algorithm Hash digest
SHA256 56e8aebab5a48d44052d533ee35dc2c8cdbe7a10472d3ade934d584e90c59b21
MD5 ad69fc59d51ea43215973add69e78748
BLAKE2b-256 3eeaf1b28fc3e063f909fb83241aa0042940c0fa4098320b1f4855c7724f6f4e

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.7-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: foldcomp-0.0.7-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 154.3 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for foldcomp-0.0.7-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 7997ce6219174f894666b81292011910637053d3a98a64a583ab54e78d10b1ec
MD5 a1d78180335071b2fdb6459e3f09ed5f
BLAKE2b-256 32c5c64279346ebfce7664d86a3130cf22e50a43b27a37e1e44ed6f82dd4cda2

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.7-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.7-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1946c813087de71841c92f2763b0926ce9e89f5f1882a3ed49fa6b85880921c1
MD5 851e935ba702098d1e5cb7941b29458a
BLAKE2b-256 702f80814f26928bbffd89bc1d2ea9143b52797520fd7b831b0de12940366d82

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 52cac8d0e9c48369ffb1f7848961afd900fe0fddca3cb07427809969cf39f575
MD5 e4aa3847f4cfeec42855da4faa8cb422
BLAKE2b-256 ee40dc68eba8e424740c1610928631653acc3f58b01f9cca26bd6e81ab7073ac

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.7-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.7-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b279f5ad06193b78db7fe680b05f53809e6e97f630356d3dc57ac1f5528ae8bc
MD5 ec4b09032a829cc06cf6b711fee9e397
BLAKE2b-256 6e896ccaeb1ebd392c4bd622d1c646ccc2ecf324b6e88f04dd7278d230055ab2

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.7-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.7-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 7aec763b930f2552871b925e043173417dfd7920accaa4e823a2eb1eb30054fe
MD5 ddcb7225912f3ed7517a3837cb02b8b0
BLAKE2b-256 2a00688fc1bfac5b1996b36a4f3e851a4198fbae8266981431e9161c16afd382

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.7-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: foldcomp-0.0.7-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 154.3 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for foldcomp-0.0.7-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 61eb9e35475ef454e56d74e9beddc34c67df5e0a4a0604672398e8856d203777
MD5 352ac5730b62c07738dfd41b0b36fc32
BLAKE2b-256 217798cff9433083256c84aa38489436fae79a7b907e49ec54d29576bd2a5735

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.7-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.7-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 218720c0ce3f0fa7088ca30bfff4ec34ef83f3afbea9b87fb9426bbee1e6c30c
MD5 21a14e21ea4b14c6b3022f83699de3aa
BLAKE2b-256 b25ad95a18c8ec525ab7727d0557042c719e13e2d791bce6f3cfb5f284936ac9

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ff229be20e2cfffa12b5c566a4c92c9667b1546300b5669c25c21baf58cd0e4e
MD5 16092ecbf281190604bbfe7b956ac6c1
BLAKE2b-256 33fd9f7bb10b8925750e728456af8a869ae713273e74a04afa47f749b4e5c59d

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.7-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.7-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8174d9d4aa43ab1e3f012b6b6eaeb1d4bab23ef7a8b9e931ae69e0c4579cb5c1
MD5 b34e844f0130d76e1f41c26ff62b8e2f
BLAKE2b-256 a4dd4204d433ebf069e542c05fa870c8339011dcae2491875ebfa04b736f8bd9

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.7-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.7-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 780cf8abf687d25822c3d393b790540adef8f246cb226804962a79a351b95b57
MD5 df28d4bfb6431a9adcf401d893c9f4db
BLAKE2b-256 e7468b306556de097b31e2cf11ead0f3f15bcf6a84fda3e8004e3d8a08df7a0c

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.7-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: foldcomp-0.0.7-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 154.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for foldcomp-0.0.7-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 107a5e7151d90cda00fbd20eff51cd8cf88e6f87d48704db78dd457770a2ccc3
MD5 e2fffc99925f61774265afb93e564ddc
BLAKE2b-256 c5b247c142d33bb802dd1505c24ce43b08ebf396e53891f5400f5e0ad062dd66

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.7-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.7-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 009956e7678045a7f49e2fa7c5ea30311090107ae0f562dd8bd4037fd53fdb32
MD5 5fc7786a896f7f3ae2066c1cf4c3e1de
BLAKE2b-256 679d4d6d3f03525f173380abb347e12b7c62b7006583c614079742e4f8dd90c9

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f41aff4c18399811a2571f3d999a9abb33c681fcb0cbb96d87f3c2f7616235bc
MD5 071341c4502efe8ea737da3c62aca863
BLAKE2b-256 ece69f70dfae43c2afc1b197dcae2d80006550f29a44563a8776c5ae704321f1

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.7-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.7-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 83401f32dc996ec26314691ab5e65ed362d4adcd2c2935cbef2996cdf47e8038
MD5 144c95c616c67bca4869bdf4097b46c7
BLAKE2b-256 f55bf783e68dce29530a192e23b8111f373a3128fe9532b63df9a4d2653036a0

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.7-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.7-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 24eb2ba08e6fe908e4b239a6ba590ec54d1b851620e419744df6e697bdf36a66
MD5 e7e97b2e5fd46bd4fe30baf2e02b0e97
BLAKE2b-256 04ca0aa8d6f325610ec0054b9e89d8deab7560f33a3e1345a208deb48b4685d9

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.7-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: foldcomp-0.0.7-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 154.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for foldcomp-0.0.7-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 98a4c7f199dcc4afda8dff00c7861d8d8774b5133ec474a678d999deb7a7e1eb
MD5 88b64fbcc9007b45818283257db1f6c5
BLAKE2b-256 4092416c2560bd52caf3ae9eb1746990e422a1805428e351062eecf11c3ab0ce

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.7-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.7-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0c797e533570f1e03ce926200de50652880c4d1b266c12d8b297a2e7f16827c8
MD5 36f1b228d21bc704b5efee8f6cbeea08
BLAKE2b-256 5a65f373340cb0565e660501b59bc8007e3c14b86966d424d4e07ef9b5dcf23d

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8e3efee2e1ba4661ed376b6436ba88bd0c90037698de5d4085fe6ab64dfb552f
MD5 366d02fa007e92dc2dbc5c090bdc172c
BLAKE2b-256 00535e0f03e50e2dc0c07f99daf21d9edd68926a16357d4e9be0b3d1ceedc203

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.7-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.7-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 facaf4d301ab49dc97658dd80939995f8722f9c21a66ddc39024fb692ea8d5e6
MD5 0d6384c3e585d8c52c92c851dfa9cfa9
BLAKE2b-256 3d1dc1b0a634f6c1c9469acad47983cc2ad282dbd8d852b979e12a345e57cf70

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.7-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.7-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 bfbaf1f60fd523067b51bdada473060d9146848c0efb78d39109ac9fed572707
MD5 f2284b733af0fe6d4d379080751d4439
BLAKE2b-256 d7be5c2a9fb830afa3be5910b0933c80c6e1f97f10018207da027d5673f92c70

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.7-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: foldcomp-0.0.7-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 154.2 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for foldcomp-0.0.7-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 081fadbb968eb1b11603df48435dbf124832b407c5e556756ff7073ad78fb8a4
MD5 3a6c460267e8c7a5cf4a4d73c5ba4a76
BLAKE2b-256 c78d972bbdb49dc38ece096f8f0c1b07a8aa27a92b7ffc011c4fe1a0acafa1cb

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.7-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.7-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 be7daf7e0c203f81953c209372655427e1800f140746ea569d0b861ae8883f9d
MD5 05a6d560de0b75147db7fcfa372a363a
BLAKE2b-256 934188753c31bef3d42666ed4efb45fe0f1308a345358d5966165f1c8347ef89

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6e57601144439646f9a28fc1a981b8dfd4498d7e7630e24dd9eee0cd8295a3f9
MD5 6ad9fec25ba5d39708cdd8448e11cefb
BLAKE2b-256 005dcd94c0bb832720fa1357cd155e267d60c4719e3c6c0f2ae2b3a98b1ddc58

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.7-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.7-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 629270d531c2187307ba6159af6085808ea646565b67d03718bda5109953b9b1
MD5 88d66a3f629b5ef880941f0eb628be8b
BLAKE2b-256 285380f9a776b06439e28296a2111e43362d4a4511d76811bde192da0b2ab0f2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page