Skip to main content

Foldcomp compresses protein structures with torsion angles effectively. It compresses the backbone atoms to 8 bytes and the side chain to additionally 4-5 byes per residue, an averaged-sized protein of 350 residues requires ~4.2kb. Foldcomp is a C++ library with Python bindings.

Project description

Foldcomp

Foldcomp compresses protein structures with torsion angles effectively. It compresses the backbone atoms to 8 bytes and the side chain to additionally 4-5 byes per residue, thus an averaged-sized protein of 350 residues requires ~6kb.

Left panel: Foldcomp data format, saving amino acid residue in 13 byte. Top right panel:  Foldcomp decompression is as fast as gzip. Bottom right panel: Foldcomp compression ratio is higher than pulchra and gzip.

Foldcomp is a compression method and format to compress protein structures requiring only 13 bytes per residue, which reduces the required storage space by an order of magnitude compared to saving 3D coordinates directly. We achieve this reduction by encoding the torsion angles of the backbone as well as the side-chain angles in a compact binary file format, FCZ.

Foldcomp currently only supports compression of single chain PDB files

Usage

Installing Foldcomp

# Install Foldcomp Python package
pip install foldcomp

# Download static binaries for Linux
wget https://mmseqs.com/foldcomp/foldcomp-linux-x86_64.tar.gz

# Download static binaries for Linux (ARM64)
wget https://mmseqs.com/foldcomp/foldcomp-linux-arm64.tar.gz

# Download binary for macOS
wget https://mmseqs.com/foldcomp/foldcomp-macos-universal.tar.gz

Executable

# Compression
foldcomp compress <pdb_file|cif_file> [<fcz_file>]
foldcomp compress [-t number] <pdb_dir|cif_dir> [<fcz_dir>]

# Decompression
foldcomp decompress <fcz_file> [<pdb_file>]
foldcomp decompress [-t number] <fcz_dir> [<pdb_dir>]

# Extraction of sequence or pLDDT
foldcomp extract [--plddt|--fasta] <fcz_file> [<txt_file|fasta_file>]
foldcomp extract [--plddt|--fasta] [-t number] <fcz_dir|tar> [<output_dir>]

# Check
foldcomp check <fcz_file>
foldcomp check [-t number] <fcz_dir|tar>

# RMSD
foldcomp rmsd <pdb1|cif1> <pdb2|cif2>

# Options
 -h, --help           print this help message
 -t, --threads        threads for (de)compression of folders/tar files [default=1]
 -a, --alt            use alternative atom order [default=false]
 -b, --break          interval size to save absolute atom coordinates [default=200]
 -z, --tar            save as tar file [default=false]
 --plddt              extract pLDDT score (only for extraction mode)
 --fasta              extract amino acid sequence (only for extraction mode)
 --no-merge           do not merge output files (only for extraction mode)

Python API

You can find more in-depth examples of using Foldcomp's Python interface in the example notebook: Open In Colab

import foldcomp
# 01. Handling a FCZ file
# Open a fcz file
with open("test/compressed.fcz", "rb") as fcz:
  fcz_binary = fcz.read()

  # Decompress
  (name, pdb) = foldcomp.decompress(fcz_binary) # pdb_out[0]: file name, pdb_out[1]: pdb binary string

  # Save to a pdb file
  with open(name, "w") as pdb_file:
    pdb_file.write(pdb)

# 02. Iterate over a database of FCZ files
# Open a foldcomp database
ids = ["d1asha_", "d1it2a_"]
with foldcomp.open("test/example_db", ids=ids) as db:
  # Iterate through database
  for (name, pdb) in db:
      # save entries as seperate pdb files
      with open(name + ".pdb", "w") as pdb_file:
        pdb_file.write(pdb)

Contributor

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

foldcomp-0.0.2.tar.gz (18.3 kB view details)

Uploaded Source

Built Distributions

foldcomp-0.0.2-cp311-cp311-win_amd64.whl (137.4 kB view details)

Uploaded CPython 3.11 Windows x86-64

foldcomp-0.0.2-cp311-cp311-musllinux_1_1_x86_64.whl (765.4 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

foldcomp-0.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (284.7 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

foldcomp-0.0.2-cp311-cp311-macosx_10_9_x86_64.whl (229.6 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

foldcomp-0.0.2-cp311-cp311-macosx_10_9_universal2.whl (436.1 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

foldcomp-0.0.2-cp310-cp310-win_amd64.whl (137.4 kB view details)

Uploaded CPython 3.10 Windows x86-64

foldcomp-0.0.2-cp310-cp310-musllinux_1_1_x86_64.whl (765.4 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

foldcomp-0.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (284.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

foldcomp-0.0.2-cp310-cp310-macosx_10_9_x86_64.whl (229.6 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

foldcomp-0.0.2-cp310-cp310-macosx_10_9_universal2.whl (436.1 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

foldcomp-0.0.2-cp39-cp39-win_amd64.whl (137.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

foldcomp-0.0.2-cp39-cp39-musllinux_1_1_x86_64.whl (765.4 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

foldcomp-0.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (284.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

foldcomp-0.0.2-cp39-cp39-macosx_10_9_x86_64.whl (229.6 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

foldcomp-0.0.2-cp39-cp39-macosx_10_9_universal2.whl (436.1 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

foldcomp-0.0.2-cp38-cp38-win_amd64.whl (137.4 kB view details)

Uploaded CPython 3.8 Windows x86-64

foldcomp-0.0.2-cp38-cp38-musllinux_1_1_x86_64.whl (765.4 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

foldcomp-0.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (284.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

foldcomp-0.0.2-cp38-cp38-macosx_10_9_x86_64.whl (229.6 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

foldcomp-0.0.2-cp38-cp38-macosx_10_9_universal2.whl (436.1 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

foldcomp-0.0.2-cp37-cp37m-win_amd64.whl (137.3 kB view details)

Uploaded CPython 3.7m Windows x86-64

foldcomp-0.0.2-cp37-cp37m-musllinux_1_1_x86_64.whl (765.4 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

foldcomp-0.0.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (284.9 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

foldcomp-0.0.2-cp37-cp37m-macosx_10_9_x86_64.whl (229.7 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file foldcomp-0.0.2.tar.gz.

File metadata

  • Download URL: foldcomp-0.0.2.tar.gz
  • Upload date:
  • Size: 18.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for foldcomp-0.0.2.tar.gz
Algorithm Hash digest
SHA256 5a873d016fbdbef46ee99668211ce554af50601becf61baf1f5e4a487296a8d4
MD5 a786fc572770ffaba12249fd0999b870
BLAKE2b-256 c724620eb9e74e5a59455dd9fc88bff9acdfaf52572a71b0d41a86fb636e3388

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: foldcomp-0.0.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 137.4 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for foldcomp-0.0.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 1458547f2731b9778ba0ca9713c8ff82b00fdcb0ed9226d5ddaad3234189a547
MD5 dd541a0b0c21a7e1a312c21e8f6a3500
BLAKE2b-256 d5997360893b692abf188b13b59f86ae332bbef16bf9fc4bbcd032bfe0e0d55c

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.2-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.2-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 dd31e36f136c7c534835f288a714bc905affedcff85bf836c7ccf28eda60baa8
MD5 24b1cf73d2f93a7cd310dd07d83e869c
BLAKE2b-256 dc652864d97e5c1e0dfe70b8f95af1d41e4d4c4df7a7a155953e62e28809d39d

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 572d173a218f5830dd1bf938c4b1931bd331a7ff536cecd161b2b2e0a4c893f1
MD5 aedcead7406e1fd7fa4697e5dc5500ae
BLAKE2b-256 17a7a665f639ac2b9a45a6a51f5777733b688ed9c57dc848829fee3fa73b9c0a

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 52f1ec0077602c2dfb16d110fda8e87844b4e676fbdf293445f5fe907213466c
MD5 77018c5e3eafdec547dfe5ee2abddb6c
BLAKE2b-256 30f745cbf8668d2436a7b1f87bbf0e962707414d988fe6cc0aca07585abfcd1d

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.2-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.2-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 a9cae95e2b73e22c67a31a621551e5b766fde92756bc7c6a42f2471983c98f97
MD5 3d4d46c72c776b15172a28fcf5512fb9
BLAKE2b-256 704a3663c3eea031ce94e010d958a9ffff8b4b3c35abdd1468909a33260356e8

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: foldcomp-0.0.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 137.4 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for foldcomp-0.0.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 af9c6395b7a677688358328be8c6337e2d9bb806df78e12ed6a527cb901890cb
MD5 6b0517e9dfbfbfecc3bbeaf4db6352fd
BLAKE2b-256 bd98536e4576a1d597ba43631d221ec638acfdbd646f62213a90080d74aa9629

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.2-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.2-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 67cffbf4b57c2f0d2748958ea8030cdb9f4396515848b818eaa055245c2985f1
MD5 bba6f0f5caaed15d860598df3b6bbec9
BLAKE2b-256 ab9bc50af5809bd4b5c23f8d95aed8889d1ad27cad22423718b6bf6e7ddae242

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e04723cd11d907b3d972dd449a3840cead20ba045f5fa953b1babc947dc088d2
MD5 288c956bfee2f81ddd3ff684adf1a6a3
BLAKE2b-256 91634c7d305f43b2a62118906d51f67f5259ec20b9a4f4c7782733c50ec27706

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cd2f079474e177d4cf4ec9e76dcf2f59b84669eb21de6a19dbd180706c4a4b4c
MD5 695b60f4de45116569f0a3de55bcb3e0
BLAKE2b-256 e85a79ff7f221313e9fcfbd10515ebad95e16565e3b5233d9b9193812eb4cd50

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.2-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.2-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 b75cb483f1f2f63800fb16b3427fefc674132e7fc44d7115231da0df40ac4495
MD5 05cde75ccebdcf0965361c30018d539f
BLAKE2b-256 fd7a833f1a7408cbdff9524e8c07f2d0e01c5c9e4cccee3403038c01eb0709ad

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: foldcomp-0.0.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 137.4 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for foldcomp-0.0.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 7e93ba6f280f6f2119bb875ac2ebea27247029b25cf9ef153e82f441c09a4c6b
MD5 2790a4b627cdea4e4a22a36f7cd41358
BLAKE2b-256 8cf2bb11893d1d269fa970b8e08a38918544a8077db1248e36a8b8ee10b939be

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.2-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.2-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b4f312a984be60abbe04aff24f55da8296272d5ac8618d551d420d424bda0cf0
MD5 5a04835aa6d9f3f246bec98fe2f27231
BLAKE2b-256 e5bf88528b639ca96516df20e97b128bb4715c1e12e5ef4d2743492910fee89d

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 16dfde037c8f7c96d50234947beb02e0281ff4810a03d68328cdd55ff9626ced
MD5 17fb85806f85ebc70d079cda77934656
BLAKE2b-256 1995250a8e337739b25ba8e9708c1beee8fd450b7eeae2f39fe40dc61adacd8a

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 26730f93e8627a907b86698617cf50f9a6775310f1c5d294ce25cc488a2765a8
MD5 8bb8ff7ae913f61d3b4818ff33ffb652
BLAKE2b-256 8ce0932216a1516e4196ec5d4ba18480864382c887dba081ba16b7c0d2535934

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.2-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.2-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 b199530d0519e053d610b5e7cd5032ad6cde7e08b96a6507c09f8572627325a1
MD5 008f080d19206782b88f3b835f6bf5c9
BLAKE2b-256 3083386ea344b83427e4f7754fb6ac2ae90d406bea97cd73f1df5427d96b3dc3

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: foldcomp-0.0.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 137.4 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for foldcomp-0.0.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 18937287ef0d9b1709ce1e42c8f43c1104de2aedcaa6f276f5ebf08459cdcc8a
MD5 6c4b35f132b15355bd37cc29f05e87bf
BLAKE2b-256 70637b8c2de6daab487e4e07fd98d1393cc1b804ffbffd2a719c831dbb2bf02c

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.2-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.2-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4645f52452963992128d281e9aaf12c81e603cd352944798a6db116bb567592f
MD5 11688ec3e0ace9c07ff8b040059a795c
BLAKE2b-256 48ba66de630ab759f584289ea97f661f1e372e5af5c4b2b454555943d3b98ca2

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d061d2441533398c8a8ce1b51c669923619d34979c08a02d15d374df4afd490c
MD5 6781fcf2b741740400f24f9cce377862
BLAKE2b-256 99835d8a10d21972061ae16f21dbcc8960e6fd1afe329d11ebbe8d3d5bdc8cf8

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3b70115e35dec3e2c78c2159adeec95c50b389553b98918cd592079562d6f2b6
MD5 1881c11e45c2e08963a34c392934e100
BLAKE2b-256 8015b06efa6ca2d31309f277ba0c39c22c96ecab46b769002789e7cf1ffae504

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.2-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.2-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e62b7ad0345839cd77e907ce579512c8e5d1acdb035607825807734292522aca
MD5 2ebfbb1c74dc85255bbcb73a6ad7419a
BLAKE2b-256 b2ed50b7173dc4dbf0ac6ee02b114ce5052d79744d4c87eb67f7d44fa385fdb4

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: foldcomp-0.0.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 137.3 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for foldcomp-0.0.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 25fea3e558341003cc595c30bc0a7c395e4586245ebfcb88f418e205f30b1523
MD5 61ae64fb465657e84da503f9bc19b245
BLAKE2b-256 92b3f85eab0fdbbe5b0c6a92a134cff63edf69e6e0282cd97706b9a6517a5c57

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.2-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.2-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7a29d739a822f9d414582e3a2e362f6b807eaccda8feb073e9e1c71e62ac2aa0
MD5 1b70e8edc8f2a95432e21abe23f9c5a2
BLAKE2b-256 6a51ee664ef4dad40ad940d2d24faaaca0a8ce532e7016756c7588c6e971a39e

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c0e2f60bfab58d746d24c80286f56f40190d536bf572502a3cfda1bcc1dbf91f
MD5 a2f58c31f103809e7c78aef0c5cae6ab
BLAKE2b-256 54a49fb9b1bf0956366d0cc34f7f887a51ff20296e7becca2d6d080886c0a2df

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 33990f47001431c745a6ae7751069fed4b167e83eee0304e492770b123a597d7
MD5 f177e4f77bf0a3a39157d25ee616c821
BLAKE2b-256 c2c4c51c30bb03c99c1e396b31af51534b37f00d09ba1f62f0fe3d4f849bc04b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page