Skip to main content

Foldcomp compresses protein structures with torsion angles effectively. It compresses the backbone atoms to 8 bytes and the side chain to additionally 4-5 byes per residue, an averaged-sized protein of 350 residues requires ~4.2kb. Foldcomp is a C++ library with Python bindings.

Project description

Foldcomp

Foldcomp compresses protein structures with torsion angles effectively. It compresses the backbone atoms to 8 bytes and the side chain to additionally 4-5 byes per residue, thus an averaged-sized protein of 350 residues requires ~6kb.

Foldcomp efficient compressed format stores protein structures requiring only 13 bytes per residue, which reduces the required storage space by an order of magnitude compared to saving 3D coordinates directly. We achieve this reduction by encoding the torsion angles of the backbone as well as the side-chain angles in a compact binary file format (FCZ).

Foldcomp currently only supports compression of single chain PDB files


Left panel: Foldcomp data format, saving amino acid residue in 13 byte. Top right panel:  Foldcomp decompression is as fast as gzip. Bottom right panel: Foldcomp compression ratio is higher than pulchra and gzip.

Publications

Hyunbin Kim, Milot Mirdita, and Martin Steinegger. Foldcomp: a library and format for compressing and indexing large protein structure sets. bioRxiv, doi:10.1101/2022.12.09.519715 (2022)

Usage

Installing Foldcomp

# Install Foldcomp Python package
pip install foldcomp

# Download static binaries for Linux
wget https://mmseqs.com/foldcomp/foldcomp-linux-x86_64.tar.gz

# Download static binaries for Linux (ARM64)
wget https://mmseqs.com/foldcomp/foldcomp-linux-arm64.tar.gz

# Download binary for macOS
wget https://mmseqs.com/foldcomp/foldcomp-macos-universal.tar.gz

# Download binary for Windows (x64)
wget https://mmseqs.com/foldcomp/foldcomp-windows-x64.zip

Executable

# Compression
foldcomp compress <pdb_file|cif_file> [<fcz_file>]
foldcomp compress [-t number] <pdb_dir|cif_dir> [<fcz_dir>]

# Decompression
foldcomp decompress <fcz_file> [<pdb_file>]
foldcomp decompress [-t number] <fcz_dir> [<pdb_dir>]

# Extraction of sequence or pLDDT
foldcomp extract [--plddt|--fasta] <fcz_file> [<txt_file|fasta_file>]
foldcomp extract [--plddt|--fasta] [-t number] <fcz_dir|tar> [<output_dir>]

# Check
foldcomp check <fcz_file>
foldcomp check [-t number] <fcz_dir|tar>

# RMSD
foldcomp rmsd <pdb1|cif1> <pdb2|cif2>

# Options
 -h, --help           print this help message
 -t, --threads        threads for (de)compression of folders/tar files [default=1]
 -r, --recursive      recursively look for files in directory [default=0]
 -f, --file           input is a list of files [default=0]
 -a, --alt            use alternative atom order [default=false]
 -b, --break          interval size to save absolute atom coordinates [default=25]
 -z, --tar            save as tar file [default=false]
 -d, --db             save as database [default=false]
 -y, --overwrite          overwrite existing files [default=false]
 --skip-discontinuous skip PDB with with discontinuous residues (only batch compression)
 --plddt              extract pLDDT score (only for extraction mode)
 --fasta              extract amino acid sequence (only for extraction mode)
 --no-merge           do not merge output files (only for extraction mode)
 --time               measure time for compression/decompression

Downloading Databases

We offer prebuilt databases for multiple large sets of predicted protein structures and a Python helper to download the database files.

You can download the AlphaFoldDB Swiss-Prot with the following command:

python -c "import foldcomp; foldcomp.setup('afdb_swissprot_v4');

Currently we offer the following databases:

  • ESMAtlas v2023_02: foldcomp.setup('esmatlas_v2023_02')

  • ESMAtlas high-quality: foldcomp.setup('highquality_clust30')

    Note: We skipped all structures with discontinous residues or other issues. Here is a list with the affected predictions; high-quality (~100k), v2023_02 (~10k)

  • AlphaFoldDB Uniprot: foldcomp.setup('afdb_uniprot_v4')

  • AlphaFoldDB Swiss-Prot: foldcomp.setup('afdb_swissprot_v4')

  • AlphaFoldDB Cluster Representatives: foldcomp.setup('afdb_rep_v4')

  • AlphaFoldDB Cluster Representatives (Dark Clusters): foldcomp.setup('afdb_rep_dark_v4')

If you want other prebuilt datasets, please get in touch with us through our GitHub issues.

If you have issues downloading the databases you can navigate directly to our download server and download the required files. E.g. afdb_uniprot_v4, afdb_uniprot_v4.index, afdb_uniprot_v4.dbtype, afdb_uniprot_v4.lookup, and optionally afdb_uniprot_v4.source.

Python API

You can find more in-depth examples of using Foldcomp's Python interface in the example notebook: Open In Colab

import foldcomp
# 01. Handling a FCZ file
# Open a fcz file
with open("test/compressed.fcz", "rb") as fcz:
  fcz_binary = fcz.read()

  # Decompress
  (name, pdb) = foldcomp.decompress(fcz_binary) # pdb_out[0]: file name, pdb_out[1]: pdb binary string

  # Save to a pdb file
  with open(name, "w") as pdb_file:
    pdb_file.write(pdb)

  # Get data as dictionary (v0.0.3)
  data_dict = foldcomp.get_data(fcz_binary) # foldcomp.get_data(pdb) also works
  # Keys: phi, psi, omega, torsion_angles, residues, bond_angles, coordinates
  data_dict["phi"] # phi angles (C-N-CA-C)
  data_dict["psi"] # psi angles (N-CA-C-N)
  data_dict["omega"] # omega angles (CA-C-N-CA)
  data_dict["torsion_angles"] # torsion angles of the backbone as list (phi + psi + omega)
  data_dict["bond_angles"] # bond angles of the backbone as list
  data_dict["residues"] # amino acid residues as string
  data_dict["coordinates"] # coordinates of the backbone as list

# 02. Iterate over a database of FCZ files
# Open a foldcomp database
ids = ["d1asha_", "d1it2a_"]
with foldcomp.open("test/example_db", ids=ids) as db:
  # Iterate through database
  for (name, pdb) in db:
      # save entries as seperate pdb files
      with open(name + ".pdb", "w") as pdb_file:
        pdb_file.write(pdb)

Subsetting Databases

If you are dealing with millions of entries, we recommend using createsubdb command of mmseqs2 to subset databases. The following commands can be used to subset the AlphaFold Uniprot DB with given IDs.

# mmseqs createsubdb --subdb-mode 0 --id-mode 1 id_list.txt input_foldcomp_db output_foldcomp_db
mmseqs createsubdb --subdb-mode 0 --id-mode 1 id_list.txt afdb_uniprot_v4 afdb_subset

Please note that the IDs in afdb_uniprot_v4 are in the format AF-A0A5S3Y9Q7-F1-model_v4 .

Community Contributions

Contributor

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

foldcomp-0.0.3.tar.gz (19.9 kB view details)

Uploaded Source

Built Distributions

foldcomp-0.0.3-cp311-cp311-win_amd64.whl (151.0 kB view details)

Uploaded CPython 3.11 Windows x86-64

foldcomp-0.0.3-cp311-cp311-musllinux_1_1_x86_64.whl (795.0 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

foldcomp-0.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (265.0 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

foldcomp-0.0.3-cp311-cp311-macosx_10_9_x86_64.whl (246.0 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

foldcomp-0.0.3-cp311-cp311-macosx_10_9_universal2.whl (470.7 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

foldcomp-0.0.3-cp310-cp310-win_amd64.whl (151.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

foldcomp-0.0.3-cp310-cp310-musllinux_1_1_x86_64.whl (795.0 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

foldcomp-0.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (265.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

foldcomp-0.0.3-cp310-cp310-macosx_10_9_x86_64.whl (246.1 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

foldcomp-0.0.3-cp310-cp310-macosx_10_9_universal2.whl (470.7 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

foldcomp-0.0.3-cp39-cp39-win_amd64.whl (151.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

foldcomp-0.0.3-cp39-cp39-musllinux_1_1_x86_64.whl (795.0 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

foldcomp-0.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (265.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

foldcomp-0.0.3-cp39-cp39-macosx_10_9_x86_64.whl (246.1 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

foldcomp-0.0.3-cp39-cp39-macosx_10_9_universal2.whl (470.7 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

foldcomp-0.0.3-cp38-cp38-win_amd64.whl (151.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

foldcomp-0.0.3-cp38-cp38-musllinux_1_1_x86_64.whl (795.0 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

foldcomp-0.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (265.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

foldcomp-0.0.3-cp38-cp38-macosx_10_9_x86_64.whl (246.1 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

foldcomp-0.0.3-cp38-cp38-macosx_10_9_universal2.whl (470.6 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

foldcomp-0.0.3-cp37-cp37m-win_amd64.whl (150.9 kB view details)

Uploaded CPython 3.7m Windows x86-64

foldcomp-0.0.3-cp37-cp37m-musllinux_1_1_x86_64.whl (794.8 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

foldcomp-0.0.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (264.7 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

foldcomp-0.0.3-cp37-cp37m-macosx_10_9_x86_64.whl (246.6 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file foldcomp-0.0.3.tar.gz.

File metadata

  • Download URL: foldcomp-0.0.3.tar.gz
  • Upload date:
  • Size: 19.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for foldcomp-0.0.3.tar.gz
Algorithm Hash digest
SHA256 bf87862ecbae3ec989d1b69b4effef2ab8ada8e7301f697d6eb37a64b4b4c33d
MD5 8174497a6b64ba3b9f9951ffa27ebac0
BLAKE2b-256 121f677d8cec91a955193d9208d3fe118d7bc1faa141f1e09fb58c776c91e2ad

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.3-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: foldcomp-0.0.3-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 151.0 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for foldcomp-0.0.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 4f3b8fe9696a6d4a0106d422949e2158a9e37faf2c20970f8e9461ddf557c60f
MD5 c554b5034953b641593d18b2ec86e6d0
BLAKE2b-256 5f79d88e8e5525a10ce60e6a65cc26fe3b6f0aefb99beec6ef908e1425eb1b2e

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.3-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.3-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0763924e625b27bb33ac0f9046217a3da2f3153d621413b97f04476ccbf4080d
MD5 7cfb8dcfedf064dfe6e9925db24520fb
BLAKE2b-256 92f3bc52ece2ac385df95712724af9115a159fe4b021ff90be80d504c769eaa2

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f911f85c236aff6ef16fd3f565cab40c20546056d363960356d359cd539b5ac4
MD5 568820463a1c9dd29db2cebbe829987f
BLAKE2b-256 3ce30afbda58e56f46134a5aca85b5ee8220e1fa2983ead02ececb4f4af3fea1

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 86d2d60c8170507629364572523d078277ca53433c3b6f4ceaa6453a0bf3dda4
MD5 322abb7c426bf8d442a638e2d9c9c2f7
BLAKE2b-256 3f616078e64df0eb9f29e483015a09854979716b6132658939a6477b35f57def

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.3-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.3-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 1acc26bb36edd5cc376d9b8a8a6bb96e3066798ec751d452abb5d95ace43a63b
MD5 102195f0766898d316c609e0abbe4517
BLAKE2b-256 2a526c96b60554f54423ac892af63f38b8d66a75161148a57cd0a0d987acdf2c

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: foldcomp-0.0.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 151.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for foldcomp-0.0.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 580bb917ca01df24f94507d9b70042865e67a95e91d69a88c4122bca619ccd2a
MD5 f39eda1779085fc9083ba9109e6a15ba
BLAKE2b-256 b0fd532e85d5083a4635d49a933bcbcbd977b803431b21d40dc23663170f794f

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.3-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.3-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c70f6033418fe26a2fb7dbdb61e415d85976e00dcd3e65c93ef0f73d6bea322d
MD5 ce74c9ff6c3fe1fcdac182f7aea98700
BLAKE2b-256 0eacbb8d3de4a06220eab3192ad6b7b7c9c93dc08a3262a55e71c4c7a80870ae

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1e52343c40a13f1a6b1055eb4f0aaa86323e64b3dc35a94bcc9f468a7c5c3008
MD5 2eef280a6119d39bc6506052a758fd16
BLAKE2b-256 8598f21b5081fecf33a23337f891993e6c22ec6f27f4a43f53c4db3a641e1dcd

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6d90f725c60385bcd517e4da6a502d0fa3cfdfd9e55615bc2b300dc9bd9d1350
MD5 04d31559fc8a51e12db6c4d6f66f7a5c
BLAKE2b-256 50f27a8013b02ac3c002765651f873e013500ea22e3dc12aa013f698ae3b65c3

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.3-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.3-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 9201f0f473fc7edf391f01bfa11056983b111b3d7b05bb28f45448bda1638ffd
MD5 93685232692f30028029b880a571afe9
BLAKE2b-256 5b834b4eb7332b06315ad49c1be3e649abad30dd13abc352f0fa71ebd9a33255

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: foldcomp-0.0.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 151.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for foldcomp-0.0.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 dee5ca3d20fbdbdba19a13bf05757a9df385edfe0967bc45109458549d06e1f1
MD5 efd8e23779f8d79175193622ebc5bc88
BLAKE2b-256 fd0fec412826370da599dedfc55004e7b9a8b41e2e57fc43bd088c0679b7fc21

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.3-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.3-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 eeaa880e8923acda10e073fe3b15b0f378255b40f362c1294df77023db7df3d6
MD5 d12c8a4db3a8825dc1540ef5a56c595f
BLAKE2b-256 e8aa9cac44152916a4f63e21807230cf0b674c92bb057dfd80adb91eb17781cd

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e2d864ed8134be672be89ad39d3d98a5847545519387bda434bb3ee3a85f3859
MD5 92aaf5f13cd7d38af6186795ea795a51
BLAKE2b-256 0531401f2d5c9d50078ad01531a12eeab7dc5994660e7dcd5adf00d94af6ff9a

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4281185de2c9a1d21cf6b0116f071aa4561aa3d676a213627a52047035aad2ef
MD5 a80d3ac55542ceb201b50fdd97b9d1f6
BLAKE2b-256 26b015ffa743ed780ce36342331d7535fb06bbae44ae2b529f57b019238eed68

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.3-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.3-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 65e3134e1e2c62f92b7dc7b9ded3472a6462daa5fa3ff5639901d4e166760641
MD5 d47fb56cdff5b0bc10adacdb04d000a9
BLAKE2b-256 3cd92f9ca1891ea30eea6d3f53515199fd06c556ee2fd9dc65efed6c8bfacfd9

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: foldcomp-0.0.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 151.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for foldcomp-0.0.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ca5eddbe964a9cf7f96950d703883f59b0e6abf39d3fd6952ec5db9926f6fe52
MD5 1c10f1856cf6346fa6356a9cb791f3e1
BLAKE2b-256 a68f3bbef332115ec1640f89c6e76a849f2d77cc49c725d87992465c1a0da277

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.3-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.3-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0a1d8bae314d7e63ee295321feb5cdde8cd31b79aa22aa34869acf599f7da7c7
MD5 88fa2e5b1a850109401bfbfd1c0245ac
BLAKE2b-256 61c421ff48e3b6cb0bd4edfc9112042387c50c77b6749bea2b52ce586a2344f4

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bda0ac7caab776e066272f92f6abb71ee4bbc763cc930b9b4093cac0a5b45720
MD5 9f619c4db3ab3eb9ae828fc73bfd6e2e
BLAKE2b-256 d938148b843532af6b0aa1010f5b9e80ad761bb5a3252f680557e2c465a7d82f

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 245775cc9d798964a760321907d5366ae8769253ffd47fe8dd7a07a98e094904
MD5 dbae88ab8c5fda32975a53ce659aaaf1
BLAKE2b-256 8da77955160aaf87dcd4fd2df022ad6ae007fdf01665220c9d0b6b0c7cc9e512

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.3-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.3-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 73689ba3b593165aee810c86376ee0d489c263e63faf38605c4fa1c986e64aec
MD5 1062b7f42bde855614319dd09ba78441
BLAKE2b-256 4e6d96709924a3f428163229ca4fa9c104a77256119e9e487ee82f4ae3529def

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: foldcomp-0.0.3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 150.9 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for foldcomp-0.0.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 550c5626b94cbc5ad9f89372fbb7dea47b7ef980f2e78aa07b36a95ea09a0bf7
MD5 948d23acef6567667bab124a3d429959
BLAKE2b-256 4d9094f4bc5132a8090c2c097c5c0e80dc7f4e2568e0d74cdd7b29bffa31c994

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.3-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.3-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1507ac48f309c06304efc131607039a9ade4e53e7793f75ca98809fc0a879397
MD5 2f697a6ccf39a584183d04c6ad504d56
BLAKE2b-256 46a18c7fef0c201bd43cba8ed46f9e5dd6e9e684e2927fc4f9d90ded5ffba26f

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f02908ee97740c5b464a05f63fdbc21424e88a12d1c604c5c3913e40b2cf7379
MD5 ae0762d4600b4b9e7f6cd84fc1a6cc9e
BLAKE2b-256 3480e6715b3e22c1921c26bc39f668c1fe904a30ace42bfad94d4c0325152284

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0cfa3ba4a3d4868bb1e77be2010de2eae272e969a698a33a04d7377a07af9fcc
MD5 dc816a0b1ba72feb2bd01bd75375f1bb
BLAKE2b-256 97f3457139ba734b6d4b3496e580707a19de9349944d03c99d53e5c368806f21

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page