Skip to main content

Foldcomp compresses protein structures with torsion angles effectively. It compresses the backbone atoms to 8 bytes and the side chain to additionally 4-5 byes per residue, an averaged-sized protein of 350 residues requires ~4.2kb. Foldcomp is a C++ library with Python bindings.

Project description

Foldcomp

Foldcomp compresses protein structures with torsion angles effectively. It compresses the backbone atoms to 8 bytes and the side chain to additionally 4-5 byes per residue, thus an averaged-sized protein of 350 residues requires ~6kb.

Foldcomp efficient compressed format stores protein structures requiring only 13 bytes per residue, which reduces the required storage space by an order of magnitude compared to saving 3D coordinates directly. We achieve this reduction by encoding the torsion angles of the backbone as well as the side-chain angles in a compact binary file format (FCZ).

Foldcomp currently only supports compression of single chain PDB files


Left panel: Foldcomp data format, saving amino acid residue in 13 byte. Top right panel:  Foldcomp decompression is as fast as gzip. Bottom right panel: Foldcomp compression ratio is higher than pulchra and gzip.

Publications

Hyunbin Kim, Milot Mirdita, and Martin Steinegger. Foldcomp: a library and format for compressing and indexing large protein structure sets. bioRxiv, doi:10.1101/2022.12.09.519715 (2022)

Usage

Installing Foldcomp

# Install Foldcomp Python package
pip install foldcomp

# Download static binaries for Linux
wget https://mmseqs.com/foldcomp/foldcomp-linux-x86_64.tar.gz

# Download static binaries for Linux (ARM64)
wget https://mmseqs.com/foldcomp/foldcomp-linux-arm64.tar.gz

# Download binary for macOS
wget https://mmseqs.com/foldcomp/foldcomp-macos-universal.tar.gz

# Download binary for Windows (x64)
wget https://mmseqs.com/foldcomp/foldcomp-windows-x64.zip

Executable

# Compression
foldcomp compress <pdb_file|cif_file> [<fcz_file>]
foldcomp compress [-t number] <pdb_dir|cif_dir> [<fcz_dir>]

# Decompression
foldcomp decompress <fcz_file> [<pdb_file>]
foldcomp decompress [-t number] <fcz_dir> [<pdb_dir>]

# Extraction of sequence or pLDDT
foldcomp extract [--plddt|--fasta] <fcz_file> [<txt_file|fasta_file>]
foldcomp extract [--plddt|--fasta] [-t number] <fcz_dir|tar> [<output_dir>]

# Check
foldcomp check <fcz_file>
foldcomp check [-t number] <fcz_dir|tar>

# RMSD
foldcomp rmsd <pdb1|cif1> <pdb2|cif2>

# Options
 -h, --help           print this help message
 -t, --threads        threads for (de)compression of folders/tar files [default=1]
 -r, --recursive      recursively look for files in directory [default=0]
 -f, --file           input is a list of files [default=0]
 -a, --alt            use alternative atom order [default=false]
 -b, --break          interval size to save absolute atom coordinates [default=25]
 -z, --tar            save as tar file [default=false]
 -d, --db             save as database [default=false]
 -y, --overwrite          overwrite existing files [default=false]
 --skip-discontinuous skip PDB with with discontinuous residues (only batch compression)
 --plddt              extract pLDDT score (only for extraction mode)
 --fasta              extract amino acid sequence (only for extraction mode)
 --no-merge           do not merge output files (only for extraction mode)
 --time               measure time for compression/decompression

Downloading Databases

We offer prebuilt databases for multiple large sets of predicted protein structures and a Python helper to download the database files.

You can download the AlphaFoldDB Swiss-Prot with the following command:

python -c "import foldcomp; foldcomp.setup('afdb_swissprot_v4');

Currently we offer the following databases:

  • ESMAtlas v2023_02: foldcomp.setup('esmatlas_v2023_02')

  • ESMAtlas high-quality: foldcomp.setup('highquality_clust30')

    Note: We skipped all structures with discontinous residues or other issues. Here is a list with the affected predictions; high-quality (~100k), v2023_02 (~10k)

  • AlphaFoldDB Uniprot: foldcomp.setup('afdb_uniprot_v4')

  • AlphaFoldDB Swiss-Prot: foldcomp.setup('afdb_swissprot_v4')

  • AlphaFoldDB Model Organisms: foldcomp.setup('h_sapiens')

    • a_thaliana, c_albicans, c_elegans, d_discoideum, d_melanogaster, d_rerio, e_coli, g_max, h_sapiens, m_jannaschii, m_musculus, o_sativa, r_norvegicus, s_cerevisiae, s_pombe, z_mays
  • AlphaFoldDB Cluster Representatives: foldcomp.setup('afdb_rep_v4')

  • AlphaFoldDB Cluster Representatives (Dark Clusters): foldcomp.setup('afdb_rep_dark_v4')

If you want other prebuilt datasets, please get in touch with us through our GitHub issues.

If you have issues downloading the databases you can navigate directly to our download server and download the required files. E.g. afdb_uniprot_v4, afdb_uniprot_v4.index, afdb_uniprot_v4.dbtype, afdb_uniprot_v4.lookup, and optionally afdb_uniprot_v4.source.

Python API

You can find more in-depth examples of using Foldcomp's Python interface in the example notebook: Open In Colab

import foldcomp
# 01. Handling a FCZ file
# Open a fcz file
with open("test/compressed.fcz", "rb") as fcz:
  fcz_binary = fcz.read()

  # Decompress
  (name, pdb) = foldcomp.decompress(fcz_binary) # pdb_out[0]: file name, pdb_out[1]: pdb binary string

  # Save to a pdb file
  with open(name, "w") as pdb_file:
    pdb_file.write(pdb)

  # Get data as dictionary
  data_dict = foldcomp.get_data(fcz_binary) # foldcomp.get_data(pdb) also works
  # Keys: phi, psi, omega, torsion_angles, residues, bond_angles, coordinates
  data_dict["phi"] # phi angles (C-N-CA-C)
  data_dict["psi"] # psi angles (N-CA-C-N)
  data_dict["omega"] # omega angles (CA-C-N-CA)
  data_dict["torsion_angles"] # torsion angles of the backbone as list (phi + psi + omega)
  data_dict["bond_angles"] # bond angles of the backbone as list
  data_dict["residues"] # amino acid residues as string
  data_dict["coordinates"] # coordinates of the backbone as list

# 02. Iterate over a database of FCZ files
# Open a foldcomp database
ids = ["d1asha_", "d1it2a_"]
with foldcomp.open("test/example_db", ids=ids) as db:
  # Iterate through database
  for (name, pdb) in db:
      # save entries as seperate pdb files
      with open(name + ".pdb", "w") as pdb_file:
        pdb_file.write(pdb)

Subsetting Databases

If you are dealing with millions of entries, we recommend using createsubdb command of mmseqs2 to subset databases. The following commands can be used to subset the AlphaFold Uniprot DB with given IDs.

# mmseqs createsubdb --subdb-mode 0 --id-mode 1 id_list.txt input_foldcomp_db output_foldcomp_db
mmseqs createsubdb --subdb-mode 0 --id-mode 1 id_list.txt afdb_uniprot_v4 afdb_subset

Please note that the IDs in afdb_uniprot_v4 are in the format AF-A0A5S3Y9Q7-F1-model_v4 .

Community Contributions

Contributor

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

foldcomp-0.0.4.tar.gz (20.2 kB view details)

Uploaded Source

Built Distributions

foldcomp-0.0.4-cp311-cp311-win_amd64.whl (151.0 kB view details)

Uploaded CPython 3.11 Windows x86-64

foldcomp-0.0.4-cp311-cp311-musllinux_1_1_x86_64.whl (795.4 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

foldcomp-0.0.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (265.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

foldcomp-0.0.4-cp311-cp311-macosx_10_9_x86_64.whl (246.3 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

foldcomp-0.0.4-cp311-cp311-macosx_10_9_universal2.whl (471.0 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

foldcomp-0.0.4-cp310-cp310-win_amd64.whl (151.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

foldcomp-0.0.4-cp310-cp310-musllinux_1_1_x86_64.whl (795.4 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

foldcomp-0.0.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (265.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

foldcomp-0.0.4-cp310-cp310-macosx_10_9_x86_64.whl (246.3 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

foldcomp-0.0.4-cp310-cp310-macosx_10_9_universal2.whl (471.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

foldcomp-0.0.4-cp39-cp39-win_amd64.whl (151.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

foldcomp-0.0.4-cp39-cp39-musllinux_1_1_x86_64.whl (795.4 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

foldcomp-0.0.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (265.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

foldcomp-0.0.4-cp39-cp39-macosx_10_9_x86_64.whl (246.3 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

foldcomp-0.0.4-cp39-cp39-macosx_10_9_universal2.whl (471.0 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

foldcomp-0.0.4-cp38-cp38-win_amd64.whl (151.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

foldcomp-0.0.4-cp38-cp38-musllinux_1_1_x86_64.whl (795.4 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

foldcomp-0.0.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (265.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

foldcomp-0.0.4-cp38-cp38-macosx_10_9_x86_64.whl (246.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

foldcomp-0.0.4-cp38-cp38-macosx_10_9_universal2.whl (471.0 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

foldcomp-0.0.4-cp37-cp37m-win_amd64.whl (151.0 kB view details)

Uploaded CPython 3.7m Windows x86-64

foldcomp-0.0.4-cp37-cp37m-musllinux_1_1_x86_64.whl (795.1 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

foldcomp-0.0.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (265.2 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

foldcomp-0.0.4-cp37-cp37m-macosx_10_9_x86_64.whl (246.8 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file foldcomp-0.0.4.tar.gz.

File metadata

  • Download URL: foldcomp-0.0.4.tar.gz
  • Upload date:
  • Size: 20.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for foldcomp-0.0.4.tar.gz
Algorithm Hash digest
SHA256 25fd7a3d405b985d5ecf351c2d076b2537cac024b8b5ee3092ea19b73592244f
MD5 dcbecd2cfde9ea73b725e6870fed9a05
BLAKE2b-256 6b2851f73384a3c1308f39c1d69b525006d49f896e2152ddf923af08f75afc37

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.4-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: foldcomp-0.0.4-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 151.0 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for foldcomp-0.0.4-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d543162db6448bc1e9f10b7cabf6d499462b44f772a2de2da2e5c92965f8c51d
MD5 7365209a1e02eb0f7c88799dec245ddb
BLAKE2b-256 efea7753ca5a7080d550e6a902a3eadda586dab1fb5fc9e21aac0fd4b55f14c7

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.4-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.4-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e56e27a84b2abf76f4b8e03377062bea8916fa5ec13639864be50ca76847b492
MD5 4675a781f48f7f1f640c61bb8f86c304
BLAKE2b-256 e5fa65cc48ef8ced96b9952bac85df82a7ef4e60b4e9347666011f3408580cc3

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c40ed5b51d6da0eaedddcd1801b8f296362467fefb9b1fe1e641630d7065ae3a
MD5 3336c7e75ebe415c66d768da47cf938a
BLAKE2b-256 d0a2bba278b8716538e15fdef48b4c86bb1247bdd4d614a6253404147fbd9347

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.4-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.4-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9c0afb12eea2bc06a3b4e94f26c31f3965faf09df90db48c08519e58f7438de9
MD5 8039bc5ab286b769449ff0c2361c24f6
BLAKE2b-256 2e634800dcfccb70ddf64a22da4c09e6c10b9236475775bccf296dea9f5e146f

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.4-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.4-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 ba09dad2fcda8c9cb75f0fb2aa4314414df20187e9b5f0cc52d38cb6a4ac3aa1
MD5 0e47954dd090a4f280bcaaa97bcbf3b8
BLAKE2b-256 11576618abbc23dd74c269dbaf727d99017710fadf8657918aec44d705d9bccf

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.4-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: foldcomp-0.0.4-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 151.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for foldcomp-0.0.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 0ae2ee495737fc003de158dbe91c5acc56848cb880f6cc6074c2dcbd0ece139b
MD5 73abdada0c169884b3955610121fbe4b
BLAKE2b-256 5cb21951f5976d670a984422c2fd747b90f575ef6948c33dc3e2ee401a0ca7de

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.4-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.4-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d5345dd4e25f6b7ff24986453e699c83670220f40bfdcf992b0b331481b0baa4
MD5 436441965dd582d29530b18f50d490da
BLAKE2b-256 53e455aff2cd9900eed408475ecf3e6c7a93d26132c257710bb080aafd256686

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 667f0bcede9cc310700c7ade2ca682b757846ec3669d23dd2d78d637cae12318
MD5 d43b9d549181d4e8b2d44e7432a1c25a
BLAKE2b-256 6f90fd95b5c54a76e19622c04bbd9f998b4647bbda7328c34db97bfd268a7f9d

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.4-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.4-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 90ef547653ba1242f9da2434550cebb38bd6a81bbf60139d3bda3ffcaf6d6e5f
MD5 ef6b75a366a5d7412e9ff6d97e879eb1
BLAKE2b-256 175c2f0a25e2d0918b25ed721acaea9422e60cfd3d17bc16899f84209732f445

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.4-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.4-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 f20a8d33ac329a294fce8a45470bf68cfdecc1744ea5ca76f55e23c9b3a2766d
MD5 3466729fad736b2bbc2b8040d779620c
BLAKE2b-256 115b6beac537c3cdf1678ad6af140291ff0b575fd672203acf12d669f0b82323

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.4-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: foldcomp-0.0.4-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 151.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for foldcomp-0.0.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 7c1024796d39882d44652d67bab277b775ac49db86028917c5f16e3456b62465
MD5 dc697e99196023b71a1405744d570331
BLAKE2b-256 1736bd235269731b456c9c3f780a6e9e2cf2a03a1288841dc9e559abda268769

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.4-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.4-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8d9374586b9cd7a67ccb6e6f1c11d70651fed1f92cdf33faa411389cdd2ebd6f
MD5 4f346aafe9b647e6c18ba49676902e20
BLAKE2b-256 a0de0ee51282691063cdd3af61c0e8b067eecf2395caf4eee79e11e4a052ff2d

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 24f9195b912391261e2c6527965f4283630e8040722043a7fe6bcb7b41b10c1a
MD5 2ceaa82ca2ab543dd12f75732723e8f0
BLAKE2b-256 df8554c43b56e3ff54e7dc196fbcb5153906d52405055fcf016dc7469fec1f6a

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.4-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.4-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4740ddd100e5c66fd6fbb59f1b3b3a179af74a5b0457b7dce453f2757e324148
MD5 b22b817cf86bd8cc961817dc0b6d4c95
BLAKE2b-256 7f697b1b4f65527cfeee0c2281fed2ba3fdf22273e79f756f46e58761f4ac978

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.4-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.4-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 0b3b2cd6cb68f4b549766c74675076906b6ab22e4828a03cb61be9a97d111549
MD5 ea0293725a5757b6bdc8b373945f11ef
BLAKE2b-256 543190ca1c7eb032af75c663617c706180228a00014a130545f7559ad462066d

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.4-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: foldcomp-0.0.4-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 151.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for foldcomp-0.0.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 578c3a51737cd153ff8427d5a52731466e7322e0df6bd23b2b270f6314ed223e
MD5 85fb5e22d95c0c5b5a9ffff288184449
BLAKE2b-256 f24683fe124adb534240f2d388d33a7a49c503b2c9dd0cd1520e23fb51adc5c1

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.4-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.4-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e8354443e2551d1e5687c5fbfc7d28739c305a5240cfc772e3c893c5dcfa9075
MD5 32c7a1bcff8f20a111e86bd26049f58f
BLAKE2b-256 1d4fdc441eab577c6481b8216f05076fb22b831a8abf21cd241594a14a3922cf

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a82097e81083b31a53ab63e684321a2cfec737bcba356ef8c60f38b5a5e440c6
MD5 91c36bc8c672602b070d783bb21a6db5
BLAKE2b-256 3310dbf432029be1ceabb6a9c3fac47221adc05c986438cf1c157e27919e52a9

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.4-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.4-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d2c7656ef3a97e4cb06133338beddac2eda64626593986d7d5a22cda1d57f092
MD5 c8d4eefee837222eb696ef72c94c7779
BLAKE2b-256 0ef60a79d20b06c39afc0e98a90181c0261dc0c54f7b9aff07153b1e0b1d6418

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.4-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.4-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 2d4c5f2b535fd6cbd1cf3ab5a2f6316008b843318ec93ab7044922758c9e4ac6
MD5 d5c395ea2e1474a366953699d6728065
BLAKE2b-256 04ee760d53cd57118504c5421b0b0f177c43bbbf6f733c0f4ef0efad61c8af42

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.4-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: foldcomp-0.0.4-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 151.0 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for foldcomp-0.0.4-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 b9a2d309a8f7756b14037adcb85b71b75f5bb24bc23b4c3ea8169540ad90aa9d
MD5 14007ec5355499641689dbc0a6cf47f2
BLAKE2b-256 5e10db4e58e035e3142e9622d5d83715c11130422fc25331736c39dc11284976

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.4-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.4-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 624f5250c5b58ca487f3d11c88297c472c511e1272852dfe99e263a1f3ec23bd
MD5 52194747c7d67c9548358a50a3413279
BLAKE2b-256 980dd317834d7b621c8f63419be5dbc67b10890b406a8c75e911459b54f48183

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2483fc0f475b334531cfbefdcfe05afc35cf84c19a635714da3d2d7cde234517
MD5 ad4faeb1859de5e3e8a3a353a1754a7d
BLAKE2b-256 b8de4b869c399ea7176b8df48871caff200781e21add72ce04b35c473431ab5e

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.4-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.4-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0f978eaef3b3487890c9e5df551e25ea079fe71c9867f6ef42f1760294e5805e
MD5 5c930c23a42dfb687b769511e6261db0
BLAKE2b-256 aba2e488eafab01dc7caf9393e0562f54d7aeb1db07d5ea3eb65f98306105d92

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page