Skip to main content

Foldcomp compresses protein structures with torsion angles effectively. It compresses the backbone atoms to 8 bytes and the side chain to additionally 4-5 byes per residue, an averaged-sized protein of 350 residues requires ~4.2kb. Foldcomp is a C++ library with Python bindings.

Project description

Foldcomp

Foldcomp compresses protein structures with torsion angles effectively. It compresses the backbone atoms to 8 bytes and the side chain to additionally 4-5 byes per residue, thus an averaged-sized protein of 350 residues requires ~6kb.

Foldcomp efficient compressed format stores protein structures requiring only 13 bytes per residue, which reduces the required storage space by an order of magnitude compared to saving 3D coordinates directly. We achieve this reduction by encoding the torsion angles of the backbone as well as the side-chain angles in a compact binary file format (FCZ).

Foldcomp currently only supports compression of single chain PDB files


Left panel: Foldcomp data format, saving amino acid residue in 13 byte. Top right panel:  Foldcomp decompression is as fast as gzip. Bottom right panel: Foldcomp compression ratio is higher than pulchra and gzip.

Publications

Hyunbin Kim, Milot Mirdita, and Martin Steinegger. Foldcomp: a library and format for compressing and indexing large protein structure sets. bioRxiv, doi:10.1101/2022.12.09.519715 (2022)

Usage

Installing Foldcomp

# Install Foldcomp Python package
pip install foldcomp

# Download static binaries for Linux
wget https://mmseqs.com/foldcomp/foldcomp-linux-x86_64.tar.gz

# Download static binaries for Linux (ARM64)
wget https://mmseqs.com/foldcomp/foldcomp-linux-arm64.tar.gz

# Download binary for macOS
wget https://mmseqs.com/foldcomp/foldcomp-macos-universal.tar.gz

# Download binary for Windows (x64)
wget https://mmseqs.com/foldcomp/foldcomp-windows-x64.zip

Executable

# Compression
foldcomp compress <pdb_file|cif_file> [<fcz_file>]
foldcomp compress [-t number] <pdb_dir|cif_dir> [<fcz_dir>]

# Decompression
foldcomp decompress <fcz_file> [<pdb_file>]
foldcomp decompress [-t number] <fcz_dir> [<pdb_dir>]

# Extraction of sequence or pLDDT
foldcomp extract [--plddt|--fasta] <fcz_file> [<txt_file|fasta_file>]
foldcomp extract [--plddt|--fasta] [-t number] <fcz_dir|tar> [<output_dir>]

# Check
foldcomp check <fcz_file>
foldcomp check [-t number] <fcz_dir|tar>

# RMSD
foldcomp rmsd <pdb1|cif1> <pdb2|cif2>

# Options
 -h, --help           print this help message
 -t, --threads        threads for (de)compression of folders/tar files [default=1]
 -r, --recursive      recursively look for files in directory [default=0]
 -f, --file           input is a list of files [default=0]
 -a, --alt            use alternative atom order [default=false]
 -b, --break          interval size to save absolute atom coordinates [default=25]
 -z, --tar            save as tar file [default=false]
 -d, --db             save as database [default=false]
 -y, --overwrite          overwrite existing files [default=false]
 --skip-discontinuous skip PDB with with discontinuous residues (only batch compression)
 --plddt              extract pLDDT score (only for extraction mode)
 --fasta              extract amino acid sequence (only for extraction mode)
 --no-merge           do not merge output files (only for extraction mode)
 --time               measure time for compression/decompression

Downloading Databases

We offer prebuilt databases for multiple large sets of predicted protein structures and a Python helper to download the database files.

You can download the AlphaFoldDB Swiss-Prot with the following command:

python -c "import foldcomp; foldcomp.setup('afdb_swissprot_v4');

Currently we offer the following databases:

  • ESMAtlas v2023_02: foldcomp.setup('esmatlas_v2023_02')

  • ESMAtlas high-quality: foldcomp.setup('highquality_clust30')

    Note: We skipped all structures with discontinous residues or other issues. Here is a list with the affected predictions; high-quality (~100k), v2023_02 (~10k)

  • AlphaFoldDB Uniprot: foldcomp.setup('afdb_uniprot_v4')

  • AlphaFoldDB Swiss-Prot: foldcomp.setup('afdb_swissprot_v4')

  • AlphaFoldDB Model Organisms: foldcomp.setup('h_sapiens')

    • a_thaliana, c_albicans, c_elegans, d_discoideum, d_melanogaster, d_rerio, e_coli, g_max, h_sapiens, m_jannaschii, m_musculus, o_sativa, r_norvegicus, s_cerevisiae, s_pombe, z_mays
  • AlphaFoldDB Cluster Representatives: foldcomp.setup('afdb_rep_v4')

  • AlphaFoldDB Cluster Representatives (Dark Clusters): foldcomp.setup('afdb_rep_dark_v4')

If you want other prebuilt datasets, please get in touch with us through our GitHub issues.

If you have issues downloading the databases you can navigate directly to our download server and download the required files. E.g. afdb_uniprot_v4, afdb_uniprot_v4.index, afdb_uniprot_v4.dbtype, afdb_uniprot_v4.lookup, and optionally afdb_uniprot_v4.source.

Python API

You can find more in-depth examples of using Foldcomp's Python interface in the example notebook: Open In Colab

import foldcomp
# 01. Handling a FCZ file
# Open a fcz file
with open("test/compressed.fcz", "rb") as fcz:
  fcz_binary = fcz.read()

  # Decompress
  (name, pdb) = foldcomp.decompress(fcz_binary) # pdb_out[0]: file name, pdb_out[1]: pdb binary string

  # Save to a pdb file
  with open(name, "w") as pdb_file:
    pdb_file.write(pdb)

  # Get data as dictionary
  data_dict = foldcomp.get_data(fcz_binary) # foldcomp.get_data(pdb) also works
  # Keys: phi, psi, omega, torsion_angles, residues, bond_angles, coordinates
  data_dict["phi"] # phi angles (C-N-CA-C)
  data_dict["psi"] # psi angles (N-CA-C-N)
  data_dict["omega"] # omega angles (CA-C-N-CA)
  data_dict["torsion_angles"] # torsion angles of the backbone as list (phi + psi + omega)
  data_dict["bond_angles"] # bond angles of the backbone as list
  data_dict["residues"] # amino acid residues as string
  data_dict["coordinates"] # coordinates of the backbone as list

# 02. Iterate over a database of FCZ files
# Open a foldcomp database
ids = ["d1asha_", "d1it2a_"]
with foldcomp.open("test/example_db", ids=ids) as db:
  # Iterate through database
  for (name, pdb) in db:
      # save entries as seperate pdb files
      with open(name + ".pdb", "w") as pdb_file:
        pdb_file.write(pdb)

Subsetting Databases

If you are dealing with millions of entries, we recommend using createsubdb command of mmseqs2 to subset databases. The following commands can be used to subset the AlphaFold Uniprot DB with given IDs.

# mmseqs createsubdb --subdb-mode 0 --id-mode 1 id_list.txt input_foldcomp_db output_foldcomp_db
mmseqs createsubdb --subdb-mode 0 --id-mode 1 id_list.txt afdb_uniprot_v4 afdb_subset

Please note that the IDs in afdb_uniprot_v4 are in the format AF-A0A5S3Y9Q7-F1-model_v4 .

Community Contributions

Contributor

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

foldcomp-0.0.4.post1.tar.gz (20.2 kB view details)

Uploaded Source

Built Distributions

foldcomp-0.0.4.post1-cp311-cp311-win_amd64.whl (151.1 kB view details)

Uploaded CPython 3.11 Windows x86-64

foldcomp-0.0.4.post1-cp311-cp311-musllinux_1_1_x86_64.whl (795.6 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

foldcomp-0.0.4.post1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (265.5 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

foldcomp-0.0.4.post1-cp311-cp311-macosx_10_9_x86_64.whl (246.4 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

foldcomp-0.0.4.post1-cp311-cp311-macosx_10_9_universal2.whl (471.2 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

foldcomp-0.0.4.post1-cp310-cp310-win_amd64.whl (151.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

foldcomp-0.0.4.post1-cp310-cp310-musllinux_1_1_x86_64.whl (795.6 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

foldcomp-0.0.4.post1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (265.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

foldcomp-0.0.4.post1-cp310-cp310-macosx_10_9_x86_64.whl (246.4 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

foldcomp-0.0.4.post1-cp310-cp310-macosx_10_9_universal2.whl (471.2 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

foldcomp-0.0.4.post1-cp39-cp39-win_amd64.whl (151.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

foldcomp-0.0.4.post1-cp39-cp39-musllinux_1_1_x86_64.whl (795.6 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

foldcomp-0.0.4.post1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (265.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

foldcomp-0.0.4.post1-cp39-cp39-macosx_10_9_x86_64.whl (246.4 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

foldcomp-0.0.4.post1-cp39-cp39-macosx_10_9_universal2.whl (471.2 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

foldcomp-0.0.4.post1-cp38-cp38-win_amd64.whl (151.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

foldcomp-0.0.4.post1-cp38-cp38-musllinux_1_1_x86_64.whl (795.6 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

foldcomp-0.0.4.post1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (265.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

foldcomp-0.0.4.post1-cp38-cp38-macosx_10_9_x86_64.whl (246.4 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

foldcomp-0.0.4.post1-cp38-cp38-macosx_10_9_universal2.whl (471.2 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

foldcomp-0.0.4.post1-cp37-cp37m-win_amd64.whl (151.1 kB view details)

Uploaded CPython 3.7m Windows x86-64

foldcomp-0.0.4.post1-cp37-cp37m-musllinux_1_1_x86_64.whl (795.4 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

foldcomp-0.0.4.post1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (265.3 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

foldcomp-0.0.4.post1-cp37-cp37m-macosx_10_9_x86_64.whl (247.0 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file foldcomp-0.0.4.post1.tar.gz.

File metadata

  • Download URL: foldcomp-0.0.4.post1.tar.gz
  • Upload date:
  • Size: 20.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for foldcomp-0.0.4.post1.tar.gz
Algorithm Hash digest
SHA256 03ae760f9e0ca40deb8c5102fad37d11b57bff5201e5c6f4885216ccf5f35989
MD5 11289e2aa8f634125aa3e09cdd42ab9f
BLAKE2b-256 f351529145635dee5b8b31b19b7c3dcdb8db68bf78b545b94fcf87258ce4ebd7

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.4.post1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.4.post1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 bd822c4e94237c6e13cfba036db0bf0f53b9bd393f9d227918dd8af2005b006e
MD5 2eab6ac1de25560074c0e23461eb2446
BLAKE2b-256 781544ee664ac278e3c5eba65999fb34fa3a6ac2e137d225f3ca2684ca25341d

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.4.post1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.4.post1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 da5204eaa9f3c1972cbd64e8a6e649320924e54497554ace8e39df8d48d0503f
MD5 aa8b96dd6c10040716f0dd48bb0eb5b9
BLAKE2b-256 8684ba86f02449732afe4539d141cad1441fc1c1adee438d5c09cc2cd5f51012

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.4.post1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.4.post1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 52077805b5582241fbba7baa8220f11362561c11da2e2740e55eab29c87f756f
MD5 b0070a6d72f13d87d130195ba5e2a370
BLAKE2b-256 4b69fe53343b3e15ccc7ff871ef74ffb196098ac6256c2ea572a6f8ac83bd6c9

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.4.post1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.4.post1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ae0a071205bf46dd516e43ad4e40b5ac1579609c0d93330a4e994b6f60decb4d
MD5 89e785ccc55a1097a44cc94ca4466f96
BLAKE2b-256 63a30b5a2a4c77ff028db9ad6e6368f0231b8f6a3d0563765012db651d4b511f

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.4.post1-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.4.post1-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 cbcb58bbba0abb45c4bf76fe787bfb08db4b2b09a64ca71cfab65c61d806984e
MD5 2c532c182e251ce0da48525bf05b737d
BLAKE2b-256 92155ca117edb3b39b50ada1182bba9dc4b2a3a8a6d0fa3057b22020de433773

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.4.post1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.4.post1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 950c7faecd4d56dbd1fcec461f30f0a1937c5a72c08f2ba453b76b98537fa76b
MD5 a62487a7cd90ec927c60f762655e4fb1
BLAKE2b-256 18cc68854d1fad4c07469d9b897028034b63b985dd9a2151bbf1350970112af6

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.4.post1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.4.post1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b59d85a3865c24d2bbde56ac1e3315f7efea3994f54bffdc1a1222ff87dc7856
MD5 474eb50b42c3ff321f1d374a2c1dfedf
BLAKE2b-256 f0b119e0e98c7b51c67526b1ce004a0d033d606bcc98e3eaddf42056620bfe16

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.4.post1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.4.post1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b391bdb2f7ea43356d8f99e1d09a42867381b63578e505e6ae2148590b68673e
MD5 6bbeb075348116cfbcf852e014e00fa0
BLAKE2b-256 56e4ba6722be7bb89e26d88a0e676c4e2406dcfc37c26f6054a6bc97981027f5

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.4.post1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.4.post1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6aa89cdb1e8f0aaaf477ea412126f303679f99da5476966d773566b5eff28a80
MD5 26ebbeb49b8208ee73ae04d304dc9da7
BLAKE2b-256 b998941a601454ce1338da6e9bc499f44a439bfc8b54c297c0369dcf3b865c75

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.4.post1-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.4.post1-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 b02183a2fd6d1984923e7b83ac9c84466b4d03aed89773417473be68e7107519
MD5 aeb0c33bae0804bacaaf8ea55e316fe3
BLAKE2b-256 ed1c8368f62bea7169c674bb1608c23ba20dfc496c2279a7b945633f2339b3a5

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.4.post1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.4.post1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1d072b800978114bacabcaffc7583dab1dea20aecab5cd0f8a1451e7e150e6fd
MD5 ecbc4e4cfbd4f62ffbc53d10000061bf
BLAKE2b-256 9e956442d20f60386b88b20143dc3bce03351632deb494293c471250ede5d1e5

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.4.post1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.4.post1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 468f1d19f3c217a0089684400391839fefe2b93bb751bb428ed2c792a792999f
MD5 b1cd4180782577805b6815a4e9cf3c70
BLAKE2b-256 60739b7ec324eddf5c6e5b0993638fe3541aec92fb29462eb8917af274bcf3b1

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.4.post1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.4.post1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 733dfb33f201b554a29e3a4dafde067fdb00fc137783979fb432c8a10e1170d3
MD5 62e585946164967f4394c493ced599b8
BLAKE2b-256 b19ffcdf6fe7e71dd3182e6998e1ece41c5b90e5ace91787f090b8d967d8aab3

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.4.post1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.4.post1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c4b3ae85ef0467caa484c3b26286db384ede87c71b5917b3b0342ca4c66164a7
MD5 56756ea5fdc4228668e5f2240a7410b1
BLAKE2b-256 172695862901272beef2bbfe0facaf0e2030e07f75c7eb9f45160124031a5f7e

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.4.post1-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.4.post1-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 a60354c4f539388fb5c5157ec7264d84bc5b3e642e7b503e7e7a0dd1940a5796
MD5 5b51cb0cb9e8d305dc987cbf3464e7a6
BLAKE2b-256 11119add59bf7b36f9f33b38f8529951d1e8f281520b27d5c3eaa6d25ed21548

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.4.post1-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.4.post1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f67a831ef20fb23781dda6ca0d9737858ab91220ac642db3578106a7ab95100b
MD5 c16cf5f8431bf62bc4039b52ecbc6b65
BLAKE2b-256 e317f918a39e2a4d36514bfbfe6fa3d2ed742bb1793bd0ab7a0837d983707911

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.4.post1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.4.post1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2c95dadf966caa218d9b6631367a6d7328e5357a0f8e5c81db4a13d847503dde
MD5 ad51a4efb3ca301617cddabf2ad93c9a
BLAKE2b-256 1910aef4f30a6d5d31e5e9eb8dfa05df440e5aa1d90200b2f8e2b039a15f4e14

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.4.post1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.4.post1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1af3f4a92a43fe21865de3076abc26bf007d1ce37459ccd3dffbdabefdc3a5d4
MD5 bae5ac92882f2fc8261bb274fe53bc45
BLAKE2b-256 500a9032baf3897b1ba112e801918ecbb85f8f760c7af9e6a422fe8abbff8cd1

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.4.post1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.4.post1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b47c1d7dfa040c9cad429622fe2dfd7b849530f26aa3962d66ed862ff1a03990
MD5 4c1cc9dc5fe25770f6878fb70d6a1bd5
BLAKE2b-256 5842f5ab1ad5256d7d90fb9ea38c5f15865d22fd61997455132b4af7ef01e74c

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.4.post1-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.4.post1-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 b68d395c813b5a8c39d5bb5af0faca954659d92db65f1b8ab413ad9714cacd8f
MD5 489ca40d7369f5d8bfffeb6c450b883c
BLAKE2b-256 7d40cdba6e37c20ffcedac5df795291f4b4501cde7cf6a08fb8a397f465b56ea

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.4.post1-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.4.post1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 3930bddb2dbe61d9545f9e0c8b558b3c9c073ea9b0801b8f6841c98c1abdc646
MD5 e2dd16f6f37e1e25edb098ca63d657fe
BLAKE2b-256 19289a2709a5fda1abfa5f7bc1f19decb7893ec77b93bd5a64523eafef35ec0b

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.4.post1-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.4.post1-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6258eac5ac278ac52563b9e3838b003b8d6f41282852d28ec683fea990d6b6dc
MD5 54d28eb726d7508cbadbfbb6132ee5a9
BLAKE2b-256 28275305150f2a9a5cbffbc9d23967fc149af4fd6c66f4d3f508f020db344742

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.4.post1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.4.post1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3a3ba5e98d007452a9a1a02a5b768fe3598082caee917d6b252f516caa860e93
MD5 0c2e2e8a2db6f8f044720f3b9459d0af
BLAKE2b-256 917fbb168921b6745b165f64c866aed1b1ecb11280b0f523e944e5511658b506

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.4.post1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.4.post1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e091b9feca79fefe0ad407f05ad29d3b01ed4045ca439f1126fa4c06a76980e7
MD5 c0aebfc3a753fb8061e2be9649bf3396
BLAKE2b-256 fd6415b2d8fb84656c3eef297fbe94cb77793c498e59530f6803d0026325a7fd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page