Skip to main content

Foldcomp compresses protein structures with torsion angles effectively. It compresses the backbone atoms to 8 bytes and the side chain to additionally 4-5 byes per residue, an averaged-sized protein of 350 residues requires ~4.2kb. Foldcomp is a C++ library with Python bindings.

Project description

Foldcomp

Foldcomp compresses protein structures with torsion angles effectively. It compresses the backbone atoms to 8 bytes and the side chain to additionally 4-5 byes per residue, thus an averaged-sized protein of 350 residues requires ~6kb.

Foldcomp efficient compressed format stores protein structures requiring only 13 bytes per residue, which reduces the required storage space by an order of magnitude compared to saving 3D coordinates directly. We achieve this reduction by encoding the torsion angles of the backbone as well as the side-chain angles in a compact binary file format (FCZ).

Foldcomp currently only supports compression of single chain PDB files


Left panel: Foldcomp data format, saving amino acid residue in 13 byte. Top right panel:  Foldcomp decompression is as fast as gzip. Bottom right panel: Foldcomp compression ratio is higher than pulchra and gzip.

Publications

Hyunbin Kim, Milot Mirdita, Martin Steinegger, Foldcomp: a library and format for compressing and indexing large protein structure sets, Bioinformatics, 2023;, btad153,

Usage

Installing Foldcomp

# Install Foldcomp Python package
pip install foldcomp

# Download static binaries for Linux
wget https://mmseqs.com/foldcomp/foldcomp-linux-x86_64.tar.gz

# Download static binaries for Linux (ARM64)
wget https://mmseqs.com/foldcomp/foldcomp-linux-arm64.tar.gz

# Download binary for macOS
wget https://mmseqs.com/foldcomp/foldcomp-macos-universal.tar.gz

# Download binary for Windows (x64)
wget https://mmseqs.com/foldcomp/foldcomp-windows-x64.zip

Executable

# Compression
foldcomp compress <pdb_file|cif_file> [<fcz_file>]
foldcomp compress [-t number] <pdb_dir|cif_dir> [<fcz_dir>]

# Decompression
foldcomp decompress <fcz_file> [<pdb_file>]
foldcomp decompress [-t number] <fcz_dir> [<pdb_dir>]

# Extraction of sequence or pLDDT
foldcomp extract [--plddt|--fasta] <fcz_file> [<txt_file|fasta_file>]
foldcomp extract [--plddt|--fasta] [-t number] <fcz_dir|tar> [<output_dir>]

# Check
foldcomp check <fcz_file>
foldcomp check [-t number] <fcz_dir|tar>

# RMSD
foldcomp rmsd <pdb1|cif1> <pdb2|cif2>

# Options
 -h, --help           print this help message
 -t, --threads        threads for (de)compression of folders/tar files [default=1]
 -r, --recursive      recursively look for files in directory [default=0]
 -f, --file           input is a list of files [default=0]
 -a, --alt            use alternative atom order [default=false]
 -b, --break          interval size to save absolute atom coordinates [default=25]
 -z, --tar            save as tar file [default=false]
 -d, --db             save as database [default=false]
 -y, --overwrite          overwrite existing files [default=false]
 --skip-discontinuous skip PDB with with discontinuous residues (only batch compression)
 --plddt              extract pLDDT score (only for extraction mode)
 --fasta              extract amino acid sequence (only for extraction mode)
 --no-merge           do not merge output files (only for extraction mode)
 --time               measure time for compression/decompression

Downloading Databases

We offer prebuilt databases for multiple large sets of predicted protein structures and a Python helper to download the database files.

You can download the AlphaFoldDB Swiss-Prot with the following command:

python -c "import foldcomp; foldcomp.setup('afdb_swissprot_v4');

Currently we offer the following databases:

  • ESMAtlas v2023_02: foldcomp.setup('esmatlas_v2023_02')

  • ESMAtlas high-quality: foldcomp.setup('highquality_clust30')

    Note: We skipped all structures with discontinous residues or other issues. Here is a list with the affected predictions; high-quality (~100k), v2023_02 (~10k)

  • AlphaFoldDB Uniprot: foldcomp.setup('afdb_uniprot_v4')

  • AlphaFoldDB Swiss-Prot: foldcomp.setup('afdb_swissprot_v4')

  • AlphaFoldDB Model Organisms: foldcomp.setup('h_sapiens')

    • a_thaliana, c_albicans, c_elegans, d_discoideum, d_melanogaster, d_rerio, e_coli, g_max, h_sapiens, m_jannaschii, m_musculus, o_sativa, r_norvegicus, s_cerevisiae, s_pombe, z_mays
  • AlphaFoldDB Cluster Representatives: foldcomp.setup('afdb_rep_v4')

  • AlphaFoldDB Cluster Representatives (Dark Clusters): foldcomp.setup('afdb_rep_dark_v4')

If you want other prebuilt datasets, please get in touch with us through our GitHub issues.

If you have issues downloading the databases you can navigate directly to our download server and download the required files. E.g. afdb_uniprot_v4, afdb_uniprot_v4.index, afdb_uniprot_v4.dbtype, afdb_uniprot_v4.lookup, and optionally afdb_uniprot_v4.source.

Python API

You can find more in-depth examples of using Foldcomp's Python interface in the example notebook: Open In Colab

import foldcomp
# 01. Handling a FCZ file
# Open a fcz file
with open("test/compressed.fcz", "rb") as fcz:
  fcz_binary = fcz.read()

  # Decompress
  (name, pdb) = foldcomp.decompress(fcz_binary) # pdb_out[0]: file name, pdb_out[1]: pdb binary string

  # Save to a pdb file
  with open(name, "w") as pdb_file:
    pdb_file.write(pdb)

  # Get data as dictionary
  data_dict = foldcomp.get_data(fcz_binary) # foldcomp.get_data(pdb) also works
  # Keys: phi, psi, omega, torsion_angles, residues, bond_angles, coordinates
  data_dict["phi"] # phi angles (C-N-CA-C)
  data_dict["psi"] # psi angles (N-CA-C-N)
  data_dict["omega"] # omega angles (CA-C-N-CA)
  data_dict["torsion_angles"] # torsion angles of the backbone as list (phi + psi + omega)
  data_dict["bond_angles"] # bond angles of the backbone as list
  data_dict["residues"] # amino acid residues as string
  data_dict["coordinates"] # coordinates of the backbone as list

# 02. Iterate over a database of FCZ files
# Open a foldcomp database
ids = ["d1asha_", "d1it2a_"]
with foldcomp.open("test/example_db", ids=ids) as db:
  # Iterate through database
  for (name, pdb) in db:
      # save entries as seperate pdb files
      with open(name + ".pdb", "w") as pdb_file:
        pdb_file.write(pdb)

Subsetting Databases

If you are dealing with millions of entries, we recommend using createsubdb command of mmseqs2 to subset databases. The following commands can be used to subset the AlphaFold Uniprot DB with given IDs.

# mmseqs createsubdb --subdb-mode 0 --id-mode 1 id_list.txt input_foldcomp_db output_foldcomp_db
mmseqs createsubdb --subdb-mode 0 --id-mode 1 id_list.txt afdb_uniprot_v4 afdb_subset

Please note that the IDs in afdb_uniprot_v4 are in the format AF-A0A5S3Y9Q7-F1-model_v4 .

Community Contributions

Contributor

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

foldcomp-0.0.5.tar.gz (20.5 kB view details)

Uploaded Source

Built Distributions

foldcomp-0.0.5-cp311-cp311-win_amd64.whl (152.7 kB view details)

Uploaded CPython 3.11 Windows x86-64

foldcomp-0.0.5-cp311-cp311-musllinux_1_1_x86_64.whl (797.9 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

foldcomp-0.0.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (266.5 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

foldcomp-0.0.5-cp311-cp311-macosx_10_9_x86_64.whl (247.8 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

foldcomp-0.0.5-cp311-cp311-macosx_10_9_universal2.whl (473.2 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

foldcomp-0.0.5-cp310-cp310-win_amd64.whl (152.7 kB view details)

Uploaded CPython 3.10 Windows x86-64

foldcomp-0.0.5-cp310-cp310-musllinux_1_1_x86_64.whl (797.9 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

foldcomp-0.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (266.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

foldcomp-0.0.5-cp310-cp310-macosx_10_9_x86_64.whl (247.8 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

foldcomp-0.0.5-cp310-cp310-macosx_10_9_universal2.whl (473.2 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

foldcomp-0.0.5-cp39-cp39-win_amd64.whl (152.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

foldcomp-0.0.5-cp39-cp39-musllinux_1_1_x86_64.whl (797.9 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

foldcomp-0.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (266.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

foldcomp-0.0.5-cp39-cp39-macosx_10_9_x86_64.whl (247.8 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

foldcomp-0.0.5-cp39-cp39-macosx_10_9_universal2.whl (473.2 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

foldcomp-0.0.5-cp38-cp38-win_amd64.whl (152.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

foldcomp-0.0.5-cp38-cp38-musllinux_1_1_x86_64.whl (797.9 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

foldcomp-0.0.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (266.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

foldcomp-0.0.5-cp38-cp38-macosx_10_9_x86_64.whl (247.8 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

foldcomp-0.0.5-cp38-cp38-macosx_10_9_universal2.whl (473.2 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

foldcomp-0.0.5-cp37-cp37m-win_amd64.whl (152.7 kB view details)

Uploaded CPython 3.7m Windows x86-64

foldcomp-0.0.5-cp37-cp37m-musllinux_1_1_x86_64.whl (797.6 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

foldcomp-0.0.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (266.4 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

foldcomp-0.0.5-cp37-cp37m-macosx_10_9_x86_64.whl (248.1 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file foldcomp-0.0.5.tar.gz.

File metadata

  • Download URL: foldcomp-0.0.5.tar.gz
  • Upload date:
  • Size: 20.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for foldcomp-0.0.5.tar.gz
Algorithm Hash digest
SHA256 35b5fec74f753bd3e5ef7ac83afa6aef45be118d4db06f8720d30d0f03a01474
MD5 d0a60665600afc321389ae4c26d11553
BLAKE2b-256 4d6a861e247876d426711f5713123c81638ba7c68a34f635ab4ca612e2546b88

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.5-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: foldcomp-0.0.5-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 152.7 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for foldcomp-0.0.5-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 86124978fe1adda66fbece10cd25fad5c20c50f7dc4d99f456f71805ff8945de
MD5 d00235fc9b5e7dc9319052f946fe1cd9
BLAKE2b-256 c006958a031da73dc6806daa9f99dccadf7ac24844b19692a9344f078e8bc0a4

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.5-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.5-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7b923334f1685e63692fd3d5c87a1d005e1107754b5849ff3ea132111b1dfc74
MD5 a60b25afaf537dec30da6aa082e3d88e
BLAKE2b-256 cf009025e810373395ab90fcc612746829f8d13bcc7ffc7e0d256967bbc4f8de

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 04878dfb926c6bd7dd13d0a5ee47c2f6fc04a0d0e10b126f64a9b684c10c372f
MD5 7522da06d767fc213bcbb63968656739
BLAKE2b-256 fcd0b520fe8469d7a8789b176705b828990296caa6d7605e885a46d64f8df4b2

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.5-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.5-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a3bed97a54a94df64489fa8174c53a3322b4c3bf2ee57f0e5f39d04fc0521ac1
MD5 492acbcbeda017fec1b26eb092a17299
BLAKE2b-256 3cdc0589ab1fdb0959241b7ed9649e0941c6e838796f2361fc52f923d81ea192

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.5-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.5-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 fa18255c38e9c2ef75de18cd767a2448ef78a278e047fde210c444154326c660
MD5 2f68ac5ecbd52a5ef44dd9ca727cb069
BLAKE2b-256 4e1bc68480cc3ab312a1ae8375fbea22479de09d7e376c9af3cd8477b082c1f6

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.5-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: foldcomp-0.0.5-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 152.7 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for foldcomp-0.0.5-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 9b8508295bbd27951c9ef7b5ac02597009bf63bed0ac3cb027371c1ce451ae90
MD5 afde1f99d627c1057551ff1f338fa964
BLAKE2b-256 1789f3c5fc27e117bccab8168b5ea7a821ef4b7dbcf80ecb5cd38f729d4e8704

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.5-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.5-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ecee8c33ccbe1bfcf3c06d2216ead54221a0aaf0eccb739bf01e4fbbf9f92ca3
MD5 9cf9403ca95338196b5a641b03504dc3
BLAKE2b-256 52598f49e5e33a5cceea5eaa8d423aae615903efb34cdf421fe469e6daafa586

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ec90dadca0e2b370d4c268258c53750164b08dfc592c5545005dc6d2cdb5161b
MD5 f14f08522a10cf6c8f8bf8b38c94ac99
BLAKE2b-256 6bc1db01b4aa6d5b315189c98efe2587765576197ce3711f23de8f4e5fca87b7

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.5-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.5-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f07a61f0a0c97a6c5e8d78fa9c22f4fb3ef8619c6c23945ef14447e5cbf064b9
MD5 43fff325c6148240712840a98a32f890
BLAKE2b-256 2c1cb6718e8ea668f7adf1629f080a3a8ced8aab5e90ba2c077fa694eb6fdc68

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.5-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.5-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 75c0fce4272b77d11c941308352e8272d5ac7fe43e2220dabd73ebe58f7132d9
MD5 6b732b3deb155746cd853f32b50343c2
BLAKE2b-256 f1302f8624f8e81d5b84caa8b6ba286810ec9fb2a3ee44a08202c7e8c328b24e

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.5-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: foldcomp-0.0.5-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 152.7 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for foldcomp-0.0.5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e58add5f972b1a838e800371ab639a2b36a0ba889dfece87ca6577c2faccc364
MD5 c032feb46bce6b984698c22c23bc056b
BLAKE2b-256 b7ce1d8112c63ad31b54ef288fe1a6b8090874d11a044061df6c12acc55e1b95

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.5-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.5-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8825716da67daca86c8a4e8296d23d33d1de9cd8d0017a91461d2d3fd579f6d0
MD5 e84648b3a5aea281e5cac0314876c820
BLAKE2b-256 b63b3d0957a67186423939575039f640c2a32e0a05144132385ac4fab265ff5f

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ec7993bba648557188a869806a6fa1834b86fa356dcdb10379cfd1338f17e157
MD5 dd24536504043a2cbd8f7be84bf42037
BLAKE2b-256 6dac710b0dca0ba25512fe370ad48d5566a0bb5b3a0a054adfbbecfcd0bc2d25

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.5-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.5-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8a21ad799eaa8ed0965c54e6218f0f7b0cecb8d6d5b7af236aa3d2f72623d937
MD5 030ab1b0bbcc93935303ab29b51836d7
BLAKE2b-256 09bf64b2193a67db5dbf6c160c2df3b9451668694ca8cfcfb9b608ea989f1f62

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.5-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.5-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 0bbd144dcab243da643bb9defde3d7d65d02308dcb306c90c73d7f6763b94cf4
MD5 6885d77cf4cfdc5e63c06be81168c6b2
BLAKE2b-256 b04a1e604fb6b9ec9ed2bb71496120828922fc484fac3a757dad987daf563894

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.5-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: foldcomp-0.0.5-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 152.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for foldcomp-0.0.5-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f700ce57ef0a5a9a2e8fa89c73b09407dce9f191c075808a58fde19955049884
MD5 652c3b7c0e08e30934e9b57b0690ae44
BLAKE2b-256 984bb97988c8e36cbcd07238d541f04d0b0dfafc7540a3c4785c8f8b67c00b8e

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.5-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.5-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f558c05be1320f1eef607da51c024a036d51785179259e132e09a00036062cf3
MD5 a3efdcc37e9330671199208ce9454fd2
BLAKE2b-256 eeac383636bf3fcc2f7de38abe44357827ba8befeb9a62e074d691d7cda0bcb9

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e03c40e8f6569f1d8bc94d22e3cd76c55ef34db3d8699f4710187f68c2e777ab
MD5 33b156e11e1133b8814dc34ec783d624
BLAKE2b-256 c897e6cbf5225a0ccced0cc2e6b77595b4787f215ae09e8cef1780450c5f7430

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.5-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.5-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 be15eb39b31efbda816af848f767e5b033e8d179b1ac6043eec580d306ef1e11
MD5 25c92e8a94b9633b08116766148a3bb7
BLAKE2b-256 7500f7180199d3bfc1412848a6608986c86f2d5041af5eea11036a7b8a5e4d03

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.5-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.5-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 59d794e6bc5fba035d8bc74410cd196a3666a4431a2cb4e1cbff7ee11555fae6
MD5 116957eabe95c71b7a4b9de3dc4f110d
BLAKE2b-256 fcf6a58525761ce9c5bcff8c914c7fe32e7db9d049582053c798d2b11a06d70e

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.5-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: foldcomp-0.0.5-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 152.7 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for foldcomp-0.0.5-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 a04a419dc24c50e1acea42f0177153f9f5ff127ce4bb4bc196c9a6b3040ed2ab
MD5 e0a2eda84451ebf638473bba4180704b
BLAKE2b-256 a5d9a8d1a20b0f8e5c018d2b0cc5f8b3ac1c8ef7c9abbc12d2dc7532c31f9138

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.5-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.5-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9760fd85ee35525d6d1fe7fa838f29391c69f9a7fd204c68c3e6841b2185f430
MD5 5dbd7e152b89e0967d028617143299a1
BLAKE2b-256 6d96d455299cc5196e9aa4dbfd4dd416d51daf25e6b87d88ed094f1fbcea3a23

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 15896e9622e83747ad8f231c64cf43893dbaa249777dcebd9200393b9b9768eb
MD5 1b6c971c6dfd66a1a83639daa50104a7
BLAKE2b-256 01ab3413b0af87284afbfba0f63be48198f94a6b2ad369960b1d9883c962cf92

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.5-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.5-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 45ccef5b08a2aab8d68301e487c03d27938e8fe26e8e419e9187544e58454305
MD5 0d7e245b0b2130e06b5f3e9e670f1610
BLAKE2b-256 52f51dafee7c6d9a99e49e86e434308d9d33d93367c7b890ac4e9988825da5a1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page