Skip to main content

Foldcomp compresses protein structures with torsion angles effectively. It compresses the backbone atoms to 8 bytes and the side chain to additionally 4-5 byes per residue, an averaged-sized protein of 350 residues requires ~4.2kb. Foldcomp is a C++ library with Python bindings.

Project description

Foldcomp

Foldcomp compresses protein structures with torsion angles effectively. It compresses the backbone atoms to 8 bytes and the side chain to additionally 4-5 byes per residue, thus an averaged-sized protein of 350 residues requires ~6kb.

Foldcomp efficient compressed format stores protein structures requiring only 13 bytes per residue, which reduces the required storage space by an order of magnitude compared to saving 3D coordinates directly. We achieve this reduction by encoding the torsion angles of the backbone as well as the side-chain angles in a compact binary file format (FCZ).

Foldcomp currently only supports compression of single chain PDB files


Left panel: Foldcomp data format, saving amino acid residue in 13 byte. Top right panel:  Foldcomp decompression is as fast as gzip. Bottom right panel: Foldcomp compression ratio is higher than pulchra and gzip.

Publications

Hyunbin Kim, Milot Mirdita, Martin Steinegger, Foldcomp: a library and format for compressing and indexing large protein structure sets, Bioinformatics, 2023;, btad153,

Usage

Installing Foldcomp

# Install Foldcomp Python package
pip install foldcomp

# Download static binaries for Linux
wget https://mmseqs.com/foldcomp/foldcomp-linux-x86_64.tar.gz

# Download static binaries for Linux (ARM64)
wget https://mmseqs.com/foldcomp/foldcomp-linux-arm64.tar.gz

# Download binary for macOS
wget https://mmseqs.com/foldcomp/foldcomp-macos-universal.tar.gz

# Download binary for Windows (x64)
wget https://mmseqs.com/foldcomp/foldcomp-windows-x64.zip

Executable

# Compression
foldcomp compress <pdb|cif> [<fcz>]
foldcomp compress [-t number] <dir|tar(.gz)> [<dir|tar|db>]

# Decompression
foldcomp decompress <fcz|tar> [<pdb>]
foldcomp decompress [-t number] <dir|tar(.gz)|db> [<dir|tar>]

# Decompressing a subset of Foldcomp database
foldcomp decompress [-t number] --id-list <idlist.txt> <db> [<dir|tar>]

# Extraction of sequence or pLDDT
foldcomp extract [--plddt|--amino-acid] <fcz> [<fasta>]
foldcomp extract [--plddt|--amino-acid] [-t number] <dir|tar(.gz)|db> [<fasta_out>]

# Check
foldcomp check <fcz>
foldcomp check [-t number] <dir|tar(.gz)|db>

# RMSD
foldcomp rmsd <pdb|cif> <pdb|cif>

# Options
 -h, --help           print this help message
 -v, --version        print version
 -t, --threads        threads for (de)compression of folders/tar files [default=1]
 -r, --recursive      recursively look for files in directory [default=0]
 -f, --file           input is a list of files [default=0]
 -a, --alt            use alternative atom order [default=false]
 -b, --break          interval size to save absolute atom coordinates [default=25]
 -z, --tar            save as tar file [default=false]
 -d, --db             save as database [default=false]
 -y, --overwrite      overwrite existing files [default=false]
 -l, --id-list        a file of id list to be processed (only for database input)
 --skip-discontinuous skip PDB with with discontinuous residues (only batch compression)
 --check              check FCZ before and skip entries with error (only for batch decompression)
 --plddt              extract pLDDT score (only for extraction mode)
 --fasta              extract amino acid sequence (only for extraction mode)
 --no-merge           do not merge output files (only for extraction mode)
 --time               measure time for compression/decompression

Downloading Databases

We offer prebuilt databases for multiple large sets of predicted protein structures and a Python helper to download the database files.

You can download the AlphaFoldDB Swiss-Prot with the following command:

python -c "import foldcomp; foldcomp.setup('afdb_swissprot_v4');

Currently we offer the following databases:

  • ESMAtlas full (v0 + v2023_02): foldcomp.setup('esmatlas')

  • ESMAtlas v2023_02: foldcomp.setup('esmatlas_v2023_02')

  • ESMAtlas high-quality: foldcomp.setup('highquality_clust30')

    Note: We skipped all structures with discontinous residues or other issues. Here is a list with the affected predictions; full (~21M), high-quality (~100k), v2023_02 (~10k)

  • AlphaFoldDB Uniprot: foldcomp.setup('afdb_uniprot_v4')

  • AlphaFoldDB Swiss-Prot: foldcomp.setup('afdb_swissprot_v4')

  • AlphaFoldDB Model Organisms: foldcomp.setup('h_sapiens')

    • a_thaliana, c_albicans, c_elegans, d_discoideum, d_melanogaster, d_rerio, e_coli, g_max, h_sapiens, m_jannaschii, m_musculus, o_sativa, r_norvegicus, s_cerevisiae, s_pombe, z_mays
  • AlphaFoldDB Cluster Representatives: foldcomp.setup('afdb_rep_v4')

  • AlphaFoldDB Cluster Representatives (Dark Clusters): foldcomp.setup('afdb_rep_dark_v4')

If you want other prebuilt datasets, please get in touch with us through our GitHub issues.

If you have issues downloading the databases you can navigate directly to our download server and download the required files. E.g. afdb_uniprot_v4, afdb_uniprot_v4.index, afdb_uniprot_v4.dbtype, afdb_uniprot_v4.lookup, and optionally afdb_uniprot_v4.source.

Python API

You can find more in-depth examples of using Foldcomp's Python interface in the example notebook: Open In Colab

import foldcomp
# 01. Handling a FCZ file
# Open a fcz file
with open("test/compressed.fcz", "rb") as fcz:
  fcz_binary = fcz.read()

  # Decompress
  (name, pdb) = foldcomp.decompress(fcz_binary) # pdb_out[0]: file name, pdb_out[1]: pdb binary string

  # Save to a pdb file
  with open(name, "w") as pdb_file:
    pdb_file.write(pdb)

  # Get data as dictionary
  data_dict = foldcomp.get_data(fcz_binary) # foldcomp.get_data(pdb) also works
  # Keys: phi, psi, omega, torsion_angles, residues, bond_angles, coordinates
  data_dict["phi"] # phi angles (C-N-CA-C)
  data_dict["psi"] # psi angles (N-CA-C-N)
  data_dict["omega"] # omega angles (CA-C-N-CA)
  data_dict["torsion_angles"] # torsion angles of the backbone as list (phi + psi + omega)
  data_dict["bond_angles"] # bond angles of the backbone as list
  data_dict["residues"] # amino acid residues as string
  data_dict["coordinates"] # coordinates of the backbone as list

# 02. Iterate over a database of FCZ files
# Open a foldcomp database
ids = ["d1asha_", "d1it2a_"]
with foldcomp.open("test/example_db", ids=ids) as db:
  # Iterate through database
  for (name, pdb) in db:
      # save entries as seperate pdb files
      with open(name + ".pdb", "w") as pdb_file:
        pdb_file.write(pdb)

Subsetting Databases

If you are dealing with millions of entries, we recommend using createsubdb command of mmseqs2 to subset databases. The following commands can be used to subset the AlphaFold Uniprot DB with given IDs.

# mmseqs createsubdb --subdb-mode 0 --id-mode 1 id_list.txt input_foldcomp_db output_foldcomp_db
mmseqs createsubdb --subdb-mode 0 --id-mode 1 id_list.txt afdb_uniprot_v4 afdb_subset

Please note that the IDs in afdb_uniprot_v4 are in the format AF-A0A5S3Y9Q7-F1-model_v4 .

Community Contributions

Contributor

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

foldcomp-0.0.6.tar.gz (21.0 kB view details)

Uploaded Source

Built Distributions

foldcomp-0.0.6-cp311-cp311-win_amd64.whl (154.3 kB view details)

Uploaded CPython 3.11 Windows x86-64

foldcomp-0.0.6-cp311-cp311-musllinux_1_1_x86_64.whl (798.0 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

foldcomp-0.0.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (266.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

foldcomp-0.0.6-cp311-cp311-macosx_10_9_x86_64.whl (248.0 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

foldcomp-0.0.6-cp311-cp311-macosx_10_9_universal2.whl (473.3 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

foldcomp-0.0.6-cp310-cp310-win_amd64.whl (154.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

foldcomp-0.0.6-cp310-cp310-musllinux_1_1_x86_64.whl (798.0 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

foldcomp-0.0.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (266.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

foldcomp-0.0.6-cp310-cp310-macosx_10_9_x86_64.whl (248.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

foldcomp-0.0.6-cp310-cp310-macosx_10_9_universal2.whl (473.3 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

foldcomp-0.0.6-cp39-cp39-win_amd64.whl (154.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

foldcomp-0.0.6-cp39-cp39-musllinux_1_1_x86_64.whl (798.0 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

foldcomp-0.0.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (266.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

foldcomp-0.0.6-cp39-cp39-macosx_10_9_x86_64.whl (248.0 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

foldcomp-0.0.6-cp39-cp39-macosx_10_9_universal2.whl (473.3 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

foldcomp-0.0.6-cp38-cp38-win_amd64.whl (154.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

foldcomp-0.0.6-cp38-cp38-musllinux_1_1_x86_64.whl (798.0 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

foldcomp-0.0.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (266.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

foldcomp-0.0.6-cp38-cp38-macosx_10_9_x86_64.whl (248.0 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

foldcomp-0.0.6-cp38-cp38-macosx_10_9_universal2.whl (473.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

foldcomp-0.0.6-cp37-cp37m-win_amd64.whl (154.2 kB view details)

Uploaded CPython 3.7m Windows x86-64

foldcomp-0.0.6-cp37-cp37m-musllinux_1_1_x86_64.whl (797.7 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

foldcomp-0.0.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (266.5 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

foldcomp-0.0.6-cp37-cp37m-macosx_10_9_x86_64.whl (248.2 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file foldcomp-0.0.6.tar.gz.

File metadata

  • Download URL: foldcomp-0.0.6.tar.gz
  • Upload date:
  • Size: 21.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for foldcomp-0.0.6.tar.gz
Algorithm Hash digest
SHA256 0d2250d8a533de74a4e328763b31894135cbaa53768cad49ed36731be8069217
MD5 2bec649d31ff009d040dd61f53ddb4c7
BLAKE2b-256 b33739feace934cce70774ff6edac5c46de365d0ad951d1c1aed4035c50856ae

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.6-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: foldcomp-0.0.6-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 154.3 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for foldcomp-0.0.6-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 dc478a2cf80dc23368cc02cffde9c55bbaf4ebc9b0f88accac7354b79c4d4225
MD5 9d9fc54df2da19aa160b63eae40c0f44
BLAKE2b-256 14e200e710dc45ce8fd3e8864b5559c45e11d1fa6b16c66cd7d256c3f0ed7c55

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.6-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.6-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 209f8db47c4d3df067e007380d95320e0ca2570e96ebf123aaf643e3161a5c0f
MD5 23b49081cf0240818d0be95e7acd6b1a
BLAKE2b-256 4f298f70e72b6b07b80632a7b456683dffb31687476c8dc0754cabfea4741552

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 02b161414e006801330ea68f4f57590f33b23d6044ca7b82a3f1d7023529e376
MD5 d9d6f90c21e6d0ee788be7adba68e8bf
BLAKE2b-256 c343fe1c456cde8c73c9ba479f9d3f23dd4e15b2126c5ffe7cafed4db03cdbe5

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.6-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.6-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4a576e00a0cd6c977118fd0e4f164c2a6e3059da56bd83179f37329a8f9cb61e
MD5 6d06508ca90e35c6e8258a1cb5a68d4c
BLAKE2b-256 53c5f23a0954c55a5c32b5af1698a3269460231017d2034aec0e3f93d3253b46

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.6-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.6-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 43e04f772077a0b856913b63f9b851d4ee72c62767df69580c1b1b5932f7e7c9
MD5 8cdc6310b7b6e034e0c28e2cf632e2a9
BLAKE2b-256 59890f569d8830a40712930f0cf7ed246b05bf38945856d340058b5f597d8afe

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.6-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: foldcomp-0.0.6-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 154.3 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for foldcomp-0.0.6-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 79254b4965ff9c307d17efd2b89d1be847da28f31a905c89afd0d697fcaaeeee
MD5 1e3e70190e709fb1a8b1997a0877b333
BLAKE2b-256 bdb623b8075d55b6ad63907c62e986bb96c3cd08d4eac921d5e600ae6a2fa51c

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.6-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.6-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 97a039e6a44da5b8d26469e4cb987b008242adba3a68d02090ac0d416b83e42d
MD5 115ccbf5f7af691eac210645edad3e9c
BLAKE2b-256 3622f577a1a0c9b4a2d797e0df3a928334a81a41d51bc678eaebfbedbe6cfa54

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3347c2fd2abbe1aa37ccc70dbe348fd2126bdcf80a7ba25b60c764c3706bd012
MD5 a1c079186c98ae5b0edbdedb42e7bbac
BLAKE2b-256 5b5ed12123ae9d036b49a7ddaee6cc62c437e98ddae67b84d1550c54e5c43cb4

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.6-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.6-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 900725b33a9e6597f21ff56f285352cfd66fed16181ebdc8efafc591eb0b0e70
MD5 aa821c43ca1cde719b3a96647cd8b9d7
BLAKE2b-256 8e03b37d7d5130bb841765c42b45f4aa341f40dfd1a36f4db85714c4e9d0fb24

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.6-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.6-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 b9af9b9f063f6e5ee7429822d729c22ea6b33e585b57faeb65a7a7c6ba8629ff
MD5 ac627867831c341ffbc7c50dc53b0085
BLAKE2b-256 4610b6feb7ad93635034f9b7aeaa87298a6913630de81d17ef0fe923eba7bcff

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.6-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: foldcomp-0.0.6-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 154.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for foldcomp-0.0.6-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 de8fcbef0ba893a68b6753ed8cb9b19f87ca4c8ce20728feb47d9339d6a781b0
MD5 21e397c99cea1ebe28afc21d77e12938
BLAKE2b-256 dd8657b6e14fff365ed579911656cc025e44aaff86639c16c96ad879b66b2f37

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.6-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.6-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 54295261cca6378cbedc98100448d32211a0df9b0474861ab98aa931913b3f3d
MD5 9ab990f2bc345de8c8a61d17f38a037c
BLAKE2b-256 0003f7cfeb79b5e73257fc52aa0f507c0c851c77fbb3a310206ed6456b2a68f8

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9a2dc86cdd4374534462ee8e12aa20b06820751bdceb6e2051edb917788b5738
MD5 726cbf1063d9c4ac26b3fe20a7b9952b
BLAKE2b-256 f362370215261e2f62981971ca47ed0b57439aab2c911ee038f5ce97e983779f

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.6-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.6-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 575471597ba2931bbe7d2fb33832b67b35c6573f6655460ebeb2ad7f43393572
MD5 f71d921ce6917062042641d5b4729499
BLAKE2b-256 3874f0971bb6e81ebd0c2c153882e2aa35ef4e5a0674f4b532d633574245b36e

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.6-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.6-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 7d820d494ecd4a86746627013090781b89ca24c400c579c8e7893b595c3fb61a
MD5 07f49f1a1b4133c3b67242007fcc47a0
BLAKE2b-256 d3491563e53f65f23f5fde0168691e03c85d4f22400aad3eb87ca63e8072a59f

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.6-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: foldcomp-0.0.6-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 154.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for foldcomp-0.0.6-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c3c5d69fb4f5090dd3000ba767e65daa59127bb3a4d522b7ff21264b545fa468
MD5 62dcf46cd42d55782edcdf827560e151
BLAKE2b-256 4f145f14dc9aca35e744adf73faf9e35ad6d616b74f71f55f543a20b192d76b3

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.6-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.6-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ff2e3a91b0815ee97bc3d06e31deba48a8f2a7889349eb1436d67fbfe9e876b9
MD5 c56756886f7754034ac2f0a8a7fce90e
BLAKE2b-256 8b10f79c38e390ea3b91035892e89a792770197e5d1a174ac073ff7cb4f0a57c

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e5301958cfc0da659d22919a258ffc59bdadf3b402ca6cfe0a1e663409428e01
MD5 1d13a455c33ab8f1867266d359006a20
BLAKE2b-256 0d30b10642634cbb1ae4e85cf9c9052fa482bb9aa96e056e25c748bfffecc351

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.6-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.6-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5ed3ebadb7e92d443014b6ca81946858c04d0ab8f5cdfdacd7d82c3ed5f61bef
MD5 da4127323e380f1975f42a406d64a475
BLAKE2b-256 8f5a906f6d3a35674791fe30ed99a3d648d97b4b73bf9082b4e5a2719d8f603c

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.6-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.6-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 cbed9c9a82b05d0e94b0459abe51d0c2abb3f75d6261574d80ab5fb6994c7192
MD5 2d85b95c683a01ad0ef152a353c3554e
BLAKE2b-256 5358097ecdbfebcf38634910643a20b0f957e892a4e3fb3f67e1de74ccfa664e

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.6-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: foldcomp-0.0.6-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 154.2 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for foldcomp-0.0.6-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 67eda0f76ebda0332e727c6576306d635811a969788cb06feece73986c05ee34
MD5 40a03233f82980bb15120cc202e39150
BLAKE2b-256 6de3dbda7806e4a8420acc203ac5ec8f680195e0baf8ac47debb40c914884f04

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.6-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.6-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6b02e8d8ab2c6a00de036987d003b4d820360a45c22bf657eea9bee85ba51e04
MD5 6fce4e4e3a17df6c1a1215a7381112a4
BLAKE2b-256 daddef129df80bcb769f612247f0e42124c2aa2461a9a3758dfa6b3571b2fcd2

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 72df4d8a327af92cf1846f80ccc8aff785d1ae5eb2d1e39e5082a3129a80b616
MD5 be176c7311fa0f2b95434d924330d203
BLAKE2b-256 c8992c28e05fe595c589e17a3652f54e7e1a77c04afef6ae93eb792363521acc

See more details on using hashes here.

File details

Details for the file foldcomp-0.0.6-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for foldcomp-0.0.6-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 08065d4452857605f1bdaccb8ec9256bbd39488958e37e0d00176b7f8da85b23
MD5 2b2ccfded6907aab8e753c3d6d35eb20
BLAKE2b-256 16264151c93978d8610d75b1047c2bee99f68cda68dc64f9a1059e551311420f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page