forestci: confidence intervals for scikit-learn forest algorithms
Project description
forest-confidence-interval is a Python module for calculating variance and adding confidence intervals to scikit-learn random forest regression or classification objects. The core functions calculate an in-bag and error bars for random forest objects
Please read the repository README on Github.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
forestci-0.2.tar.gz
(8.0 kB
view details)
Built Distributions
File details
Details for the file forestci-0.2.tar.gz
.
File metadata
- Download URL: forestci-0.2.tar.gz
- Upload date:
- Size: 8.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e534c1951dd97e5e01a42c72e18cf291b4a8a5d24394a9689539777b9638c4bb |
|
MD5 | f9e04e03fc3438dfe623bf75b9ef3da3 |
|
BLAKE2b-256 | c5cdb51e5b256a834d5c587088a73eb6c9d266a01612e4a6d3adfa0497725baf |
File details
Details for the file forestci-0.2-py3-none-any.whl
.
File metadata
- Download URL: forestci-0.2-py3-none-any.whl
- Upload date:
- Size: 9.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1b228dcf4f9c246235f2844c75f9507213bfbd8163fc3c1c5888f19d7cd79741 |
|
MD5 | 1fb9717f5615c4475b6d9d8bbd557c78 |
|
BLAKE2b-256 | d549e0142aab956b40a7afeb21a006b5f4d0d6d07ffca4e90d28bb6d467b84e1 |
File details
Details for the file forestci-0.2-py2-none-any.whl
.
File metadata
- Download URL: forestci-0.2-py2-none-any.whl
- Upload date:
- Size: 9.0 kB
- Tags: Python 2
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5bd7e8b1440447aedb72a29b3072666c520a57a9fcbd6b432b86b200610ed65b |
|
MD5 | e9cc82738e2f0af16461d8e5165cfa17 |
|
BLAKE2b-256 | 8e773b5f426715b4912edd4d0cf8f4aab059e5dc0a30f1a32ba8464b528e5d59 |