forestci: confidence intervals for scikit-learn forest algorithms
Project description
forest-confidence-interval is a Python module for calculating variance and adding confidence intervals to scikit-learn random forest regression or classification objects. The core functions calculate an in-bag and error bars for random forest objects
Please read the repository README on Github or our documentation
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
forestci-0.3.tar.gz
(10.1 kB
view details)
Built Distributions
forestci-0.3-py3-none-any.whl
(11.7 kB
view details)
forestci-0.3-py2-none-any.whl
(11.7 kB
view details)
File details
Details for the file forestci-0.3.tar.gz
.
File metadata
- Download URL: forestci-0.3.tar.gz
- Upload date:
- Size: 10.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 459e091c68b5fc4976f9742368f473ddfad9536d9037a09b60d17e6ea9a40b9a |
|
MD5 | d1b96a572a9511098a21f4879cda0f55 |
|
BLAKE2b-256 | 512a03253aed99acfc283518b50d86a5f5509bc76f8ccddcf0dacf14f55fcd7d |
File details
Details for the file forestci-0.3-py3-none-any.whl
.
File metadata
- Download URL: forestci-0.3-py3-none-any.whl
- Upload date:
- Size: 11.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b273e5108428f1e167185c8c74494814b3f4bf05debc86eedb4a7c5143680841 |
|
MD5 | 33e12b656699b8a337ab9d2833a8993d |
|
BLAKE2b-256 | 6481b453b7521ad93473aa728f6752ecfd839ed0dfb66a1b55c8b6d26c647da8 |
File details
Details for the file forestci-0.3-py2-none-any.whl
.
File metadata
- Download URL: forestci-0.3-py2-none-any.whl
- Upload date:
- Size: 11.7 kB
- Tags: Python 2
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2ac99727d40ed817c04f9d0c9434a5c93fc66da8a6b459b6a46d83a8ae078495 |
|
MD5 | 2db40939d024f0c9749b93c1b564cc63 |
|
BLAKE2b-256 | c3c0bd18e0f87bbed1e60b08b9b6b6fa796fece68f39b221ca419f988a271c02 |