Skip to main content

Fork the single process easily

Project description

Fork the single process easily

Basic example

import forklib
import logging
import os
from time import sleep


logging.basicConfig(level=logging.DEBUG)

def run():
    print(
        "Proceess #{id} has PID: {pid}".format(
            id=forklib.get_id(),
            pid=os.getpid()
        )
    )
    sleep(1)


def main():
    print("Master proccess has PID: {0}".format(os.getpid()))
    forklib.fork(4, run)



if __name__ == '__main__':
    main()

This code makes 4 forks. When you try to run it you will see something like this

Master proccess has PID: 39485
DEBUG:forklib.forking:Starting 4 processes
Proceess #1 has PID: 39487
Proceess #0 has PID: 39486
Proceess #2 has PID: 39488
Proceess #3 has PID: 39489
DEBUG:forklib.forking:Child with PID: 39487 Number: 1 exited normally
DEBUG:forklib.forking:Child with PID: 39489 Number: 3 exited normally
DEBUG:forklib.forking:Child with PID: 39488 Number: 2 exited normally
DEBUG:forklib.forking:Child with PID: 39486 Number: 0 exited normally

Forkme will be control forks. When subprocess will be killed or will exit with non-zero code it will be restarted immediately. e.g.:

Master proccess has PID: 7579
INFO:forklib:Starting 4 processes
Proceess #0 has PID: 7580
Proceess #1 has PID: 7581
Proceess #2 has PID: 7582
Proceess #3 has PID: 7583
WARNING:forklib:Child with PID: 7580 Number: 0 killed by signal 9, restarting
Proceess #0 has PID: 7584

Parallel iteration

You can load the large array of elements on the memory and process it in multiple processes. After forking the memory will not be copied, instead this the copy-on-write mechanism will be used.

from time import sleep

from forklib import fork_map, fork
import logging


logging.basicConfig(level=logging.INFO)


def map_func(item):
    return item + 1


def main():
    for item in fork_map(map_func, range(20000), workers=10):
        print(item)

    fork(2, lambda: sleep(1), auto_restart=True)


if __name__ == '__main__':
    main()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

forklib-0.1.0.tar.gz (3.8 kB view details)

Uploaded Source

Built Distribution

forklib-0.1.0-py2-none-any.whl (4.2 kB view details)

Uploaded Python 2

File details

Details for the file forklib-0.1.0.tar.gz.

File metadata

  • Download URL: forklib-0.1.0.tar.gz
  • Upload date:
  • Size: 3.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for forklib-0.1.0.tar.gz
Algorithm Hash digest
SHA256 55df153c0f6bca08f97b17458940ae9473fecf0482758cb068ff490d2b629e32
MD5 32ca82aa021335277e9dc25e52b95105
BLAKE2b-256 a9347a102d60f87154850d1e802950323999a0f0ad2fd7a1ea90de0cdb7c8422

See more details on using hashes here.

File details

Details for the file forklib-0.1.0-py2-none-any.whl.

File metadata

File hashes

Hashes for forklib-0.1.0-py2-none-any.whl
Algorithm Hash digest
SHA256 49cf105cbcf129a72f8aa7f5cccfd35a6a4f1d0eed5f854cc3ddaf63beaa48dc
MD5 2f62e24808230836c420f3a4dd970eb9
BLAKE2b-256 94b01cb0b6f1fe3c6e68e6317217e28f1e3e3693cf1c47e79e70db65b8a2fcf9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page