Skip to main content

Fork the single process easily

Project description

Fork the single process easily

Basic example

import forklib
import logging
import os
from time import sleep


logging.basicConfig(level=logging.DEBUG)

def run():
    print(
        "Proceess #{id} has PID: {pid}".format(
            id=forklib.get_id(),
            pid=os.getpid()
        )
    )
    sleep(1)


def main():
    print("Master proccess has PID: {0}".format(os.getpid()))
    forklib.fork(4, run)



if __name__ == '__main__':
    main()

This code makes 4 forks. When you try to run it you will see something like this

Master proccess has PID: 39485
DEBUG:forklib.forking:Starting 4 processes
Proceess #1 has PID: 39487
Proceess #0 has PID: 39486
Proceess #2 has PID: 39488
Proceess #3 has PID: 39489
DEBUG:forklib.forking:Child with PID: 39487 Number: 1 exited normally
DEBUG:forklib.forking:Child with PID: 39489 Number: 3 exited normally
DEBUG:forklib.forking:Child with PID: 39488 Number: 2 exited normally
DEBUG:forklib.forking:Child with PID: 39486 Number: 0 exited normally

Forkme will be control forks. When subprocess will be killed or will exit with non-zero code it will be restarted immediately. e.g.:

Master proccess has PID: 7579
INFO:forklib:Starting 4 processes
Proceess #0 has PID: 7580
Proceess #1 has PID: 7581
Proceess #2 has PID: 7582
Proceess #3 has PID: 7583
WARNING:forklib:Child with PID: 7580 Number: 0 killed by signal 9, restarting
Proceess #0 has PID: 7584

Parallel iteration

You can load the large array of elements on the memory and process it in multiple processes. After forking the memory will not be copied, instead this the copy-on-write mechanism will be used.

from time import sleep

from forklib import fork_map, fork
import logging


logging.basicConfig(level=logging.INFO)


def map_func(item):
    return item + 1


def main():
    for item in fork_map(map_func, range(20000), workers=10):
        print(item)

    fork(2, lambda: sleep(1), auto_restart=True)


if __name__ == '__main__':
    main()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

forklib-0.2.0.tar.gz (3.8 kB view details)

Uploaded Source

Built Distribution

forklib-0.2.0-py3-none-any.whl (4.2 kB view details)

Uploaded Python 3

File details

Details for the file forklib-0.2.0.tar.gz.

File metadata

  • Download URL: forklib-0.2.0.tar.gz
  • Upload date:
  • Size: 3.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for forklib-0.2.0.tar.gz
Algorithm Hash digest
SHA256 b7e15d23ae42288cca866492d5924455e9f4eb2da872c699542b0bff73216423
MD5 6ec13e67735dd588c575bf94615d1ec2
BLAKE2b-256 ffdb2cd96ee433a2de6b177850468d361065bed6b264fa584f81447ab1714f9c

See more details on using hashes here.

File details

Details for the file forklib-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: forklib-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 4.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/33.1.1 requests-toolbelt/0.8.0 tqdm/4.20.0 CPython/3.6.5

File hashes

Hashes for forklib-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 3ace39ba53c265341ec29744b8f3d0eb37390e9297608ef0cb0c2a5903b2b59e
MD5 9fd6ef79d84ea12461f1187f26f04453
BLAKE2b-256 4003a431877374a3124b4169ed0cdc61c3781b0cdafc54af448800962024840c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page