Skip to main content

Fork the single process easily

Project description

Fork the single process easily

Basic example

import forklib
import logging
import os
from time import sleep


logging.basicConfig(level=logging.DEBUG)

def run():
    print(
        "Proceess #{id} has PID: {pid}".format(
            id=forklib.get_id(),
            pid=os.getpid()
        )
    )
    sleep(1)


def main():
    print("Master proccess has PID: {0}".format(os.getpid()))
    forklib.fork(4, run)



if __name__ == '__main__':
    main()

This code makes 4 forks. When you try to run it you will see something like this

Master proccess has PID: 39485
DEBUG:forklib.forking:Starting 4 processes
Proceess #1 has PID: 39487
Proceess #0 has PID: 39486
Proceess #2 has PID: 39488
Proceess #3 has PID: 39489
DEBUG:forklib.forking:Child with PID: 39487 Number: 1 exited normally
DEBUG:forklib.forking:Child with PID: 39489 Number: 3 exited normally
DEBUG:forklib.forking:Child with PID: 39488 Number: 2 exited normally
DEBUG:forklib.forking:Child with PID: 39486 Number: 0 exited normally

Forkme will be control forks. When subprocess will be killed or will exit with non-zero code it will be restarted immediately. e.g.:

Master proccess has PID: 7579
INFO:forklib:Starting 4 processes
Proceess #0 has PID: 7580
Proceess #1 has PID: 7581
Proceess #2 has PID: 7582
Proceess #3 has PID: 7583
WARNING:forklib:Child with PID: 7580 Number: 0 killed by signal 9, restarting
Proceess #0 has PID: 7584

Parallel iteration

You can load the large array of elements on the memory and process it in multiple processes. After forking the memory will not be copied, instead this the copy-on-write mechanism will be used.

from time import sleep

from forklib import fork_map, fork
import logging


logging.basicConfig(level=logging.INFO)


def map_func(item):
    return item + 1


def main():
    for item in fork_map(map_func, range(20000), workers=10):
        print(item)

    fork(2, lambda: sleep(1), auto_restart=True)


if __name__ == '__main__':
    main()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

forklib-0.2.1.tar.gz (3.9 kB view details)

Uploaded Source

Built Distribution

forklib-0.2.1-py3-none-any.whl (4.3 kB view details)

Uploaded Python 3

File details

Details for the file forklib-0.2.1.tar.gz.

File metadata

  • Download URL: forklib-0.2.1.tar.gz
  • Upload date:
  • Size: 3.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/33.1.1 requests-toolbelt/0.8.0 tqdm/4.20.0 CPython/3.6.5

File hashes

Hashes for forklib-0.2.1.tar.gz
Algorithm Hash digest
SHA256 2a6fe7d9203e151237c808c7baf0235cb8e19df96131b144eb6d504eea8b50e3
MD5 9233ff539a139de994caffe4be9fa290
BLAKE2b-256 d28cc773500b8322683c5b88038636cc726975ee311b4848b9ddb12e0d04f0da

See more details on using hashes here.

File details

Details for the file forklib-0.2.1-py3-none-any.whl.

File metadata

  • Download URL: forklib-0.2.1-py3-none-any.whl
  • Upload date:
  • Size: 4.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/33.1.1 requests-toolbelt/0.8.0 tqdm/4.20.0 CPython/3.6.5

File hashes

Hashes for forklib-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 721117047447783ca8d72fdb3be547115b24b78c35ed958464d159bb45cf2b5c
MD5 0cdf822414bd71c7131a796d34406ede
BLAKE2b-256 2406b4fd79a18c55af37e5a95a8184c2bc4c3f3ea6b7fbb98f91c26bb00036f7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page