Skip to main content

An implementation of Wilkinson formulas.

Project description

Formulaic

PyPI - Version PyPI - Python Version PyPI - Status build codecov Code Style

Formulaic is a high-performance implementation of Wilkinson formulas for Python.

Note: This project, while largely complete, is still a work in progress, and the API is subject to change between major versions (0.<major>.<minor>).

It provides:

  • high-performance dataframe to model-matrix conversions.
  • support for reusing the encoding choices made during conversion of one data-set on other datasets.
  • extensible formula parsing.
  • extensible data input/output plugins, with implementations for:
    • input:
      • pandas.DataFrame
      • pyarrow.Table
    • output:
      • pandas.DataFrame
      • numpy.ndarray
      • scipy.sparse.CSCMatrix
  • support for symbolic differentiation of formulas (and hence model matrices).

Example code

import pandas
from formulaic import Formula

df = pandas.DataFrame({
    'y': [0,1,2],
    'x': ['A', 'B', 'C'],
    'z': [0.3, 0.1, 0.2],
})

y, X = Formula('y ~ x + z').get_model_matrix(df)

y =

y
0 0
1 1
2 2

X =

Intercept x[T.B] x[T.C] z
0 1.0 0 0 0.3
1 1.0 1 0 0.1
2 1.0 0 1 0.2

Benchmarks

Formulaic typically outperforms R for both dense and sparse model matrices, and vastly outperforms patsy (the existing implementation for Python) for dense matrices (patsy does not support sparse model matrix output).

Benchmarks

For more details, see here.

Related projects and prior art

  • Patsy: a prior implementation of Wilkinson formulas for Python, which is widely used (e.g. in statsmodels). It has fantastic documentation (which helped bootstrap this project), and a rich array of features.
  • StatsModels.jl @formula: The implementation of Wilkinson formulas for Julia.
  • R Formulas: The implementation of Wilkinson formulas for R, which is thoroughly introduced here. [R itself is an implementation of S, in which formulas were first made popular].
  • The work that started it all: Wilkinson, G. N., and C. E. Rogers. Symbolic description of factorial models for analysis of variance. J. Royal Statistics Society 22, pp. 392–399, 1973.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

formulaic-0.3.1.tar.gz (95.1 kB view details)

Uploaded Source

Built Distribution

formulaic-0.3.1-py3-none-any.whl (81.1 kB view details)

Uploaded Python 3

File details

Details for the file formulaic-0.3.1.tar.gz.

File metadata

  • Download URL: formulaic-0.3.1.tar.gz
  • Upload date:
  • Size: 95.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for formulaic-0.3.1.tar.gz
Algorithm Hash digest
SHA256 c6275aba372616f52b02a1140d201ec1bfb2de6366731c4e62d808cbe0218791
MD5 8417480c7a30f28252479afd0a353b2a
BLAKE2b-256 4e1389946a97835d734ae3fa853e31f52ac78ccea0f0bf501957bdb8eaeb07d9

See more details on using hashes here.

Provenance

File details

Details for the file formulaic-0.3.1-py3-none-any.whl.

File metadata

  • Download URL: formulaic-0.3.1-py3-none-any.whl
  • Upload date:
  • Size: 81.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for formulaic-0.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 f53b92095df9e3874033c92c8bb735e00d90d34789e60cb4afc428be942754d8
MD5 456ba27bce86d0b03d90d2aeefe36de8
BLAKE2b-256 e0d1f02ed1e34389ace0da9c03ec6375bd96cf2da0b32f8a684bd936a9238ee8

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page