Skip to main content

Parse and compile Excel formulas and workbooks in python code.

Project description

What is formulas?

formulas implements an interpreter for Excel formulas, which parses and compile Excel formulas expressions.

Moreover, it compiles Excel workbooks to python and executes without using the Excel COM server. Hence, Excel is not needed.

Installation

To install it use (with root privileges):

$ pip install formulas

Or download the last git version and use (with root privileges):

$ python setup.py install

Install extras

Some additional functionality is enabled installing the following extras:

  • excel: enables to compile Excel workbooks to python and execute

    using: ExcelModel.

  • plot: enables to plot the formula ast and the Excel model.

To install formulas and all extras, do:

$ pip install formulas[all]

Basic Examples

The following sections will show how to:

  • parse a Excel formulas;

  • load, compile, and execute a Excel workbook;

  • extract a sub-model from a Excel workbook;

  • add a custom function.

Parsing formula

An example how to parse and execute an Excel formula is the following:

>>> import formulas
>>> func = formulas.Parser().ast('=(1 + 1) + B3 / A2')[1].compile()

To visualize formula model and get the input order you can do the following:

>>> list(func.inputs)
['A2', 'B3']
>>> func.plot(view=False)  # Set view=True to plot in the default browser.
SiteMap([(=((1 + 1) + (B3 / A2)), SiteMap())])

[graph]

Finally to execute the formula and plot the workflow:

>>> func(1, 5)
Array(7.0, dtype=object)
>>> func.plot(workflow=True, view=False)  # Set view=True to plot in the default browser.
SiteMap([(=((1 + 1) + (B3 / A2)), SiteMap())])

[graph]

Excel workbook

An example how to load, calculate, and write an Excel workbook is the following:

>>> import formulas
>>> fpath, dir_output = 'excel.xlsx', 'output'
>>> xl_model = formulas.ExcelModel().loads(fpath).finish()
>>> xl_model.calculate()
Solution(...)
>>> xl_model.write(dirpath=dir_output)
{'EXCEL.XLSX': {Book: <openpyxl.workbook.workbook.Workbook ...>}}
Tip: If you have or could have circular references, add

circular=True to finish method.

To plot the dependency graph that depict relationships between Excel cells:

>>> dsp = xl_model.dsp
>>> dsp.plot(view=False)  # Set view=True to plot in the default browser.
SiteMap([(ExcelModel, SiteMap())])

[graph]

To overwrite the default inputs that are defined by the excel file or to impose some value to a specific cell:

>>> xl_model.calculate(
...     inputs={
...         "'[EXCEL.XLSX]DATA'!A2": 3,  # To overwrite the default value.
...         "'[EXCEL.XLSX]DATA'!B3": 1  # To impose a value to B3 cell.
...     },
...     outputs=[
...        "'[EXCEL.XLSX]DATA'!C2", "'[EXCEL.XLSX]DATA'!C4"
...     ] # To define the outputs that you want to calculate.
... )
Solution([("'[EXCEL.XLSX]DATA'!A2", <Ranges>('[EXCEL.XLSX]DATA'!A2)=[[3]]),
          ("'[EXCEL.XLSX]DATA'!A3", <Ranges>('[EXCEL.XLSX]DATA'!A3)=[[6]]),
          ("'[EXCEL.XLSX]DATA'!B3", <Ranges>('[EXCEL.XLSX]DATA'!B3)=[[1]]),
          ("'[EXCEL.XLSX]DATA'!B2", <Ranges>('[EXCEL.XLSX]DATA'!B2)=[[9.0]]),
          ("'[EXCEL.XLSX]DATA'!C2", <Ranges>('[EXCEL.XLSX]DATA'!C2)=[[9.0]]),
          ("'[EXCEL.XLSX]DATA'!C4", <Ranges>('[EXCEL.XLSX]DATA'!C4)=[[1.0]])])

To build a single function out of an excel model with fixed inputs and outputs, you can use the compile method of the ExcelModel that returns a DispatchPipe. This is a function where the inputs and outputs are defined by the data node ids (i.e., cell references).

>>> func = xl_model.compile(
...     inputs=[
...         "'[EXCEL.XLSX]DATA'!A2",  # First argument of the function.
...         "'[EXCEL.XLSX]DATA'!B3"   # Second argument of the function.
...     ], # To define function inputs.
...     outputs=[
...         "'[EXCEL.XLSX]DATA'!C2", "'[EXCEL.XLSX]DATA'!C4"
...     ] # To define function outputs.
... )
>>> func
<schedula.utils.dsp.DispatchPipe object at ...>
>>> [v.value[0, 0] for v in func(3, 1)]  # To retrieve the data.
[9.0, 1.0]
>>> func.plot(view=False)  # Set view=True to plot in the default browser.
SiteMap([(ExcelModel, SiteMap())])

[graph]

Custom functions

An example how to add a custom function to the formula parser is the following:

>>> import formulas
>>> FUNCTIONS = formulas.get_functions()
>>> FUNCTIONS['MYFUNC'] = lambda x, y: 1 + y + x
>>> func = formulas.Parser().ast('=MYFUNC(1, 2)')[1].compile()
>>> func()
4

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

formulas-0.4.0.tar.gz (43.7 kB view details)

Uploaded Source

Built Distribution

formulas-0.4.0-py2.py3-none-any.whl (44.1 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file formulas-0.4.0.tar.gz.

File metadata

  • Download URL: formulas-0.4.0.tar.gz
  • Upload date:
  • Size: 43.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.2

File hashes

Hashes for formulas-0.4.0.tar.gz
Algorithm Hash digest
SHA256 fc251831bbed41d47bbe1b49793017f13a6489532ea814ae49684dd08346952d
MD5 6a2a60a755ceeab16d2c8263f109bc65
BLAKE2b-256 4e93a6e50075bdf5c141936dfc2febc1b3ac636d3a5d2b65ce380e491ee5200b

See more details on using hashes here.

File details

Details for the file formulas-0.4.0-py2.py3-none-any.whl.

File metadata

  • Download URL: formulas-0.4.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 44.1 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.2

File hashes

Hashes for formulas-0.4.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 eaedaadb522fc390161a2db7e6fa4bf6d0831d43dcf0c1eb7df37836abde903d
MD5 4710de104f9dd2876567188bcd41e898
BLAKE2b-256 ac875e21cf38a940cff42eed673bc8fc4a20ea04a7c4393e51b57f483a93d0ef

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page