Skip to main content

Parse and compile Excel formulas and workbooks in python code.

Project description

What is formulas?

formulas implements an interpreter for Excel formulas, which parses and compile Excel formulas expressions.

Moreover, it compiles Excel workbooks to python and executes without using the Excel COM server. Hence, Excel is not needed.

Installation

To install it use (with root privileges):

$ pip install formulas

Or download the last git version and use (with root privileges):

$ python setup.py install

Install extras

Some additional functionality is enabled installing the following extras:

  • excel: enables to compile Excel workbooks to python and execute

    using: ExcelModel.

  • plot: enables to plot the formula ast and the Excel model.

To install formulas and all extras, do:

$ pip install formulas[all]

Basic Examples

The following sections will show how to:

  • parse a Excel formulas;

  • load, compile, and execute a Excel workbook;

  • extract a sub-model from a Excel workbook;

  • add a custom function.

Parsing formula

An example how to parse and execute an Excel formula is the following:

>>> import formulas
>>> func = formulas.Parser().ast('=(1 + 1) + B3 / A2')[1].compile()

To visualize formula model and get the input order you can do the following:

>>> list(func.inputs)
['A2', 'B3']
>>> func.plot(view=False)  # Set view=True to plot in the default browser.
SiteMap([(=((1 + 1) + (B3 / A2)), SiteMap())])

[graph]

Finally to execute the formula and plot the workflow:

>>> func(1, 5)
Array(7.0, dtype=object)
>>> func.plot(workflow=True, view=False)  # Set view=True to plot in the default browser.
SiteMap([(=((1 + 1) + (B3 / A2)), SiteMap())])

[graph]

Excel workbook

An example how to load, calculate, and write an Excel workbook is the following:

>>> import formulas
>>> fpath, dir_output = 'excel.xlsx', 'output'
>>> xl_model = formulas.ExcelModel().loads(fpath).finish()
>>> xl_model.calculate()
Solution(...)
>>> xl_model.write(dirpath=dir_output)
{'EXCEL.XLSX': {Book: <openpyxl.workbook.workbook.Workbook ...>}}
Tip: If you have or could have circular references, add

circular=True to finish method.

To plot the dependency graph that depict relationships between Excel cells:

>>> dsp = xl_model.dsp
>>> dsp.plot(view=False)  # Set view=True to plot in the default browser.
SiteMap([(ExcelModel, SiteMap(...))])

[graph]

To overwrite the default inputs that are defined by the excel file or to impose some value to a specific cell:

>>> xl_model.calculate(
...     inputs={
...         "'[EXCEL.XLSX]DATA'!A2": 3,  # To overwrite the default value.
...         "'[EXCEL.XLSX]DATA'!B3": 1  # To impose a value to B3 cell.
...     },
...     outputs=[
...        "'[EXCEL.XLSX]DATA'!C2", "'[EXCEL.XLSX]DATA'!C4"
...     ] # To define the outputs that you want to calculate.
... )
Solution([("'[EXCEL.XLSX]DATA'!A2", <Ranges>('[EXCEL.XLSX]DATA'!A2)=[[3]]),
          ("'[EXCEL.XLSX]DATA'!A3", <Ranges>('[EXCEL.XLSX]DATA'!A3)=[[6]]),
          ("'[EXCEL.XLSX]DATA'!B3", <Ranges>('[EXCEL.XLSX]DATA'!B3)=[[1]]),
          ("'[EXCEL.XLSX]DATA'!D2", <Ranges>('[EXCEL.XLSX]DATA'!D2)=[[1]]),
          ("'[EXCEL.XLSX]DATA'!B2", <Ranges>('[EXCEL.XLSX]DATA'!B2)=[[9.0]]),
          ("'[EXCEL.XLSX]DATA'!D3", <Ranges>('[EXCEL.XLSX]DATA'!D3)=[[2.0]]),
          ("'[EXCEL.XLSX]DATA'!C2", <Ranges>('[EXCEL.XLSX]DATA'!C2)=[[10.0]]),
          ("'[EXCEL.XLSX]DATA'!D4", <Ranges>('[EXCEL.XLSX]DATA'!D4)=[[3.0]]),
          ("'[EXCEL.XLSX]DATA'!C4", <Ranges>('[EXCEL.XLSX]DATA'!C4)=[[4.0]])])

To build a single function out of an excel model with fixed inputs and outputs, you can use the compile method of the ExcelModel that returns a DispatchPipe. This is a function where the inputs and outputs are defined by the data node ids (i.e., cell references).

>>> func = xl_model.compile(
...     inputs=[
...         "'[EXCEL.XLSX]DATA'!A2",  # First argument of the function.
...         "'[EXCEL.XLSX]DATA'!B3"   # Second argument of the function.
...     ], # To define function inputs.
...     outputs=[
...         "'[EXCEL.XLSX]DATA'!C2", "'[EXCEL.XLSX]DATA'!C4"
...     ] # To define function outputs.
... )
>>> func
<schedula.utils.dsp.DispatchPipe object at ...>
>>> [v.value[0, 0] for v in func(3, 1)]  # To retrieve the data.
[10.0, 4.0]
>>> func.plot(view=False)  # Set view=True to plot in the default browser.
SiteMap([(ExcelModel, SiteMap(...))])

[graph]

Custom functions

An example how to add a custom function to the formula parser is the following:

>>> import formulas
>>> FUNCTIONS = formulas.get_functions()
>>> FUNCTIONS['MYFUNC'] = lambda x, y: 1 + y + x
>>> func = formulas.Parser().ast('=MYFUNC(1, 2)')[1].compile()
>>> func()
4

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

formulas-1.0.0.tar.gz (47.3 kB view details)

Uploaded Source

Built Distribution

formulas-1.0.0-py2.py3-none-any.whl (51.9 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file formulas-1.0.0.tar.gz.

File metadata

  • Download URL: formulas-1.0.0.tar.gz
  • Upload date:
  • Size: 47.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.8.1

File hashes

Hashes for formulas-1.0.0.tar.gz
Algorithm Hash digest
SHA256 07553def3eb3507a336897864854ca3e082947475b8777fe4bb99f6255897d37
MD5 2d83a499bc94ab18e70e5a0f0d92e18b
BLAKE2b-256 8621aca0ae9188d8e16ff4511dfcb9203dc0e36d19f9f81eb4aa3a6fa391157c

See more details on using hashes here.

File details

Details for the file formulas-1.0.0-py2.py3-none-any.whl.

File metadata

  • Download URL: formulas-1.0.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 51.9 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.8.1

File hashes

Hashes for formulas-1.0.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 1d7a6de0367b716aa71f071b094ecbd8b19a34953eda7603748457ff048740fb
MD5 be2dc2afbb0a8c2d985a60fd1d138b04
BLAKE2b-256 1b6d5c4f67c389ec8e78c1b4cdf0bc353677357e278de101107620ab1bd044ab

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page