Skip to main content

Powerful, efficient trajectory analysis in scientific Python.

Project description

Citing freud PyPI conda-forge ReadTheDocs Binder GitHub-Stars

Overview

The freud Python library provides a simple, flexible, powerful set of tools for analyzing trajectories obtained from molecular dynamics or Monte Carlo simulations. High performance, parallelized C++ is used to compute standard tools such as radial distribution functions, correlation functions, order parameters, and clusters, as well as original analysis methods including potentials of mean force and torque (PMFTs) and local environment matching. The freud library supports many input formats and outputs NumPy arrays, enabling integration with the scientific Python ecosystem for many typical materials science workflows.

Resources

Citation

When using freud to process data for publication, please use this citation.

Installation

freud is available on conda-forge for the linux-64, osx-64, osx-arm64 and win-64 architectures. Install with:

mamba install freud

freud is also available on PyPI:

python3 -m pip install freud-analysis

If you need more detailed information or wish to install freud from source, please refer to the Installation Guide to compile freud from source.

Examples

The freud library is called using Python scripts. Many core features are demonstrated in the freud documentation. The examples come in the form of Jupyter notebooks, which can also be downloaded from the freud examples repository or launched interactively on Binder. Below is a sample script that computes the radial distribution function for a simulation run with HOOMD-blue and saved into a GSD file.

import freud
import gsd.hoomd

# Create a freud compute object (RDF is the canonical example)
rdf = freud.density.RDF(bins=50, r_max=5)

# Load a GSD trajectory (see docs for other formats)
traj = gsd.hoomd.open('trajectory.gsd', 'rb')
for frame in traj:
    rdf.compute(system=frame, reset=False)

# Get bin centers, RDF data from attributes
r = rdf.bin_centers
y = rdf.rdf

Support and Contribution

Please visit our repository on GitHub for the library source code. Any issues or bugs may be reported at our issue tracker, while questions and discussion can be directed to our discussion board. All contributions to freud are welcomed via pull requests!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

freud_analysis-3.1.0.tar.gz (3.4 MB view details)

Uploaded Source

Built Distributions

freud_analysis-3.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

freud_analysis-3.1.0-cp312-cp312-macosx_11_0_arm64.whl (2.0 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

freud_analysis-3.1.0-cp312-cp312-macosx_10_14_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.12 macOS 10.14+ x86-64

freud_analysis-3.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

freud_analysis-3.1.0-cp311-cp311-macosx_11_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

freud_analysis-3.1.0-cp311-cp311-macosx_10_14_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

freud_analysis-3.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

freud_analysis-3.1.0-cp310-cp310-macosx_11_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

freud_analysis-3.1.0-cp310-cp310-macosx_10_14_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

freud_analysis-3.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

freud_analysis-3.1.0-cp39-cp39-macosx_11_0_arm64.whl (1.9 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

freud_analysis-3.1.0-cp39-cp39-macosx_10_14_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

File details

Details for the file freud_analysis-3.1.0.tar.gz.

File metadata

  • Download URL: freud_analysis-3.1.0.tar.gz
  • Upload date:
  • Size: 3.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.4

File hashes

Hashes for freud_analysis-3.1.0.tar.gz
Algorithm Hash digest
SHA256 eeb525ea446cbb5ef64352841e42589630a847bd108c27d236698cea4440fd1d
MD5 02c7d165a574089a4890b3019d2899da
BLAKE2b-256 b7d0cbd8483730842fcaef5944d6443bcfa922b9237a7d2ee27e1522650e4cb5

See more details on using hashes here.

Provenance

File details

Details for the file freud_analysis-3.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for freud_analysis-3.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 020c1b0fc30bd5fac9182aefc5d992e4e7e82a0d5a81076d5b1637fa711e9d07
MD5 da7661e534fd1b862650d438897937a2
BLAKE2b-256 a337cd13e738d2227c42dbd2f855ed294bd38b151926ef671c7952763143b4e6

See more details on using hashes here.

Provenance

File details

Details for the file freud_analysis-3.1.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for freud_analysis-3.1.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5c89e0278bf8d6ab6bfff03c60c4388775d3efd015544b2540d605dcb9812562
MD5 905a9c2e173588664ab07fc624da5eaf
BLAKE2b-256 cbc1cc7c8691e54c1a4f87355cc0e3057df8c5ec698d892531297512a59074fb

See more details on using hashes here.

Provenance

File details

Details for the file freud_analysis-3.1.0-cp312-cp312-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for freud_analysis-3.1.0-cp312-cp312-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e3f1324b19895a76217d2e316bc9ad79b1aac63c94f56e4beeadd3b63e9be0d9
MD5 b4f4244315074e00d606985deabfc2be
BLAKE2b-256 fbab80ae2054fd09b9e414969eef4b2224df1554219e6f472306e7cf7b08c172

See more details on using hashes here.

Provenance

File details

Details for the file freud_analysis-3.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for freud_analysis-3.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c79c573632ac2abbb342f1b775c3531d6cd9697453245386106b231907c9a1bc
MD5 b9604b22498a810a078f38d2d4f3ff09
BLAKE2b-256 431c128782972bef7c130d18c9e431813fcd46ecacbad86b0d96c2d3998c03be

See more details on using hashes here.

Provenance

File details

Details for the file freud_analysis-3.1.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for freud_analysis-3.1.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 564fc60baf73e994f3ed1d76fb8dd306c11c0eabae0ace18121f1fdd3d8e7a76
MD5 7ecbf0e167468c8b117fe59991c203b9
BLAKE2b-256 99399c24ee82c27b6b665e2d476a9f1c3e60f0466fae951a3c515fea479bc0a0

See more details on using hashes here.

Provenance

File details

Details for the file freud_analysis-3.1.0-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for freud_analysis-3.1.0-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 47f50b2bdc993ce24e99ef3ac56b802b1ddc6c084e64d423046f950d77179496
MD5 e6587ab951f2299e2dccf81a318a17ed
BLAKE2b-256 0676fa292956ec71568a4f5b9dcd515fbda28197ebd59955f1bb81bdbfed0595

See more details on using hashes here.

Provenance

File details

Details for the file freud_analysis-3.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for freud_analysis-3.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3fa119b71bcb7796574a3c4f2cd5db52c5b9edbbb8e27303a2036c15afa47862
MD5 db7d85aebd38bbc77d2077f812d0dbf0
BLAKE2b-256 f2043d37b32012e0920e7ea10051a1944a0c885de264b76a80d841b82a7e5df1

See more details on using hashes here.

Provenance

File details

Details for the file freud_analysis-3.1.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for freud_analysis-3.1.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0133e7a0bdfd30832b51a9214417493437a37072c6e51e05332a68aa53dfb58f
MD5 30450e0c13124762abec0b98d694e0b2
BLAKE2b-256 1d49a5c7586696c3321b1032239795a8133d1785029ce20071027085a060cadb

See more details on using hashes here.

Provenance

File details

Details for the file freud_analysis-3.1.0-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for freud_analysis-3.1.0-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a80b9a619f1730308d7b664b28f0dc1cdb01144728a0ec9738ffa66b9fe20a02
MD5 b2cf874f8c3bfc9c9ae2192a114de46a
BLAKE2b-256 561db39b7fdc9bfde4bd78b0f024abfc208c540b53d3cd7f57d433228ab0de59

See more details on using hashes here.

Provenance

File details

Details for the file freud_analysis-3.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for freud_analysis-3.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 faf49ebf021acf574335bd8214fe47effd1b32be36b6fc5aa3c7531f597cd9ed
MD5 c718055b8c1387f38b35614f2bccab63
BLAKE2b-256 15083f9e37f3547b05010a80dc88db656dd6062a1886069404e1dae712112f93

See more details on using hashes here.

Provenance

File details

Details for the file freud_analysis-3.1.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for freud_analysis-3.1.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 503aad8bd4c5b23f34acd7f175f89ca7e8e394e66ad5584565628beeec19507b
MD5 0fb6e34c0099b8e6e40c5a74a091556e
BLAKE2b-256 29e8a5d48a9a2c8376bfbb1f72253449036ae936e9aeda90295276c2544a31f5

See more details on using hashes here.

Provenance

File details

Details for the file freud_analysis-3.1.0-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for freud_analysis-3.1.0-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 41922eebce1e5a6649c59018977736d640a7f446a6d414f80884d4cfd215e775
MD5 3c3f20c6f1b0fe6a723e16f555df7bfd
BLAKE2b-256 96b781c3eeb4321c89cce6f51b6ac4bb591eb5656351afafbbd22d5df3963a23

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page