Skip to main content

Powerful, efficient trajectory analysis in scientific Python.

Project description

Citing freud PyPI conda-forge ReadTheDocs Binder GitHub-Stars

Overview

The freud Python library provides a simple, flexible, powerful set of tools for analyzing trajectories obtained from molecular dynamics or Monte Carlo simulations. High performance, parallelized C++ is used to compute standard tools such as radial distribution functions, correlation functions, order parameters, and clusters, as well as original analysis methods including potentials of mean force and torque (PMFTs) and local environment matching. The freud library supports many input formats and outputs NumPy arrays, enabling integration with the scientific Python ecosystem for many typical materials science workflows.

Resources

Citation

When using freud to process data for publication, please use this citation.

Installation

The easiest ways to install freud are using pip:

pip install freud-analysis

or conda:

conda install -c conda-forge freud

freud is also available via containers for Docker or Singularity. If you need more detailed information or wish to install freud from source, please refer to the Installation Guide to compile freud from source.

Examples

The freud library is called using Python scripts. Many core features are demonstrated in the freud documentation. The examples come in the form of Jupyter notebooks, which can also be downloaded from the freud examples repository or launched interactively on Binder. Below is a sample script that computes the radial distribution function for a simulation run with HOOMD-blue and saved into a GSD file.

import freud
import gsd.hoomd

# Create a freud compute object (RDF is the canonical example)
rdf = freud.density.RDF(bins=50, r_max=5)

# Load a GSD trajectory (see docs for other formats)
traj = gsd.hoomd.open('trajectory.gsd', 'rb')
for frame in traj:
    rdf.compute(system=frame, reset=False)

# Get bin centers, RDF data from attributes
r = rdf.bin_centers
y = rdf.rdf

Support and Contribution

Please visit our repository on GitHub for the library source code. Any issues or bugs may be reported at our issue tracker, while questions and discussion can be directed to our user forum. All contributions to freud are welcomed via pull requests!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

freud-analysis-2.7.0.tar.gz (3.3 MB view details)

Uploaded Source

Built Distributions

freud_analysis-2.7.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

freud_analysis-2.7.0-cp39-cp39-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

freud_analysis-2.7.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

freud_analysis-2.7.0-cp38-cp38-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

freud_analysis-2.7.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

freud_analysis-2.7.0-cp37-cp37m-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

freud_analysis-2.7.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

freud_analysis-2.7.0-cp36-cp36m-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file freud-analysis-2.7.0.tar.gz.

File metadata

  • Download URL: freud-analysis-2.7.0.tar.gz
  • Upload date:
  • Size: 3.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for freud-analysis-2.7.0.tar.gz
Algorithm Hash digest
SHA256 39235e0623685b8942eaeabffb8f0c468b6bd20c7b4db2b7a1653ca9789197c1
MD5 70938bfe8447d6a1815d0082040b3eda
BLAKE2b-256 6088522db82f1106628f245489242ac46c95de75cd35ff945db8eaba132162d4

See more details on using hashes here.

File details

Details for the file freud_analysis-2.7.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for freud_analysis-2.7.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 067e86331deab7196c479c3f9742b36aa3e31e548cc44521ca45d4b60b665d15
MD5 9c53629e97b377877e5744698a8cfac1
BLAKE2b-256 5c4bf0d440a3e130715aa92475d57f8f4982d213f9cceee9b2bc7ddf26e888d0

See more details on using hashes here.

File details

Details for the file freud_analysis-2.7.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: freud_analysis-2.7.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for freud_analysis-2.7.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 792900da2a2725edd2fbc12319e5832961201325ef6d820a9315aa93080254d9
MD5 973867e2a2ecc9a87fd79d83121cf42b
BLAKE2b-256 a16200c6854b0f5e8a0a37051609f81ccc8913e00f7ae3b7092827d1ca347575

See more details on using hashes here.

File details

Details for the file freud_analysis-2.7.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for freud_analysis-2.7.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c7ad77507ff6431a0d70bace7cf07134768f43746a2619af77e8651ef2b8a3a6
MD5 07ea540d99521f32eb8636326fa48c8b
BLAKE2b-256 176ece979c39345858273155077cf217e7443bb6b3e2f8069d4dd2f6c1c7bdfa

See more details on using hashes here.

File details

Details for the file freud_analysis-2.7.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: freud_analysis-2.7.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for freud_analysis-2.7.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cb1c8d6fa5813d778844dc029eff022ca6de4195fac911ba8ee02dd4d527485b
MD5 159a2b9756919f355b3156d3adbe2827
BLAKE2b-256 77d2e1266711cb43e39a12ba3dcc35d96c04730ba3bcbf748abec98ef1c7f78d

See more details on using hashes here.

File details

Details for the file freud_analysis-2.7.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for freud_analysis-2.7.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 183ad1f1b50b51abc4a73925a13bd13bb8f587db91502fecf0f6e68d2f37c578
MD5 3ec348967fda4dfd305602b78a8d8758
BLAKE2b-256 a0a038ee581cab06b0214c0f8cb902c9641623adff16cf6f1ebec7e5407da37a

See more details on using hashes here.

File details

Details for the file freud_analysis-2.7.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: freud_analysis-2.7.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for freud_analysis-2.7.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3bcd29c9b3263c420fa022fd24f81fd9b36fd0d43374ff25780d5f5c5891a809
MD5 97899ec4bd10756fc407968911839c8a
BLAKE2b-256 f9e74592f4ac789765e69240f7d31a960a87efc32acb99d7e418e3ef760030c3

See more details on using hashes here.

File details

Details for the file freud_analysis-2.7.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for freud_analysis-2.7.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 cf0a5ec6fcbeb54569536ff319990fd2280511efb942b25676a9dfd3a2a5379c
MD5 90542c81efc79ad602d91085ce3bd8f4
BLAKE2b-256 fee5d9d649c1aa1e5df01a0b0607ba63e6f4f88624ac934d042c6d24260fa315

See more details on using hashes here.

File details

Details for the file freud_analysis-2.7.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: freud_analysis-2.7.0-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for freud_analysis-2.7.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f0351b68f0aabb5110fd6f88f2c1b5f635ea23b7cdcec23a960216e24bbf93b7
MD5 11a56f0a250af5b6c8435712fbb5f104
BLAKE2b-256 03da72f104c6ace8895f57906f6d04a7feefca012e15e14fb801127ba4cf8fb8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page