Skip to main content

A Python library for drift detection in Machine Learning problems

Project description

frouros_logo


ci coverage documentation pypi python bsd_3_license

Frouros is a Python library for drift detection in machine learning systems that provides a combination of classical and more recent algorithms for both concept and data drift detection.

"Everything changes and nothing stands still"

"You could not step twice into the same river"

Heraclitus of Ephesus (535-475 BCE.)


⚡️ Quickstart

Concept drift

As a quick example, we can use the wine dataset to which concept drift it is induced in order to show the use of a concept drift detector like DDM (Drift Detection Method).

import numpy as np
from sklearn.datasets import load_wine
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler

from frouros.detectors.concept_drift import DDM, DDMConfig

np.random.seed(seed=31)

# Load wine dataset
X, y = load_wine(return_X_y=True)

# Split train (70%) and test (30%)
(
    X_train,
    X_test,
    y_train,
    y_test,
) = train_test_split(X, y, train_size=0.7, random_state=31)

# IMPORTANT: Induce/simulate concept drift in the last part (20%)
# of y_test by modifying some labels (50% approx). Therefore, changing P(y|X))
drift_size = int(y_test.shape[0] * 0.2)
y_test_drift = y_test[-drift_size:]
modify_idx = np.random.rand(*y_test_drift.shape) <= 0.5
y_test_drift[modify_idx] = (y_test_drift[modify_idx] + 1) % len(np.unique(y_test))
y_test[-drift_size:] = y_test_drift

# Define and fit model
pipeline = Pipeline(
    [
        ("scaler", StandardScaler()),
        ("model", LogisticRegression()),
    ]
)
pipeline.fit(X=X_train, y=y_train)

# Detector configuration and instantiation
config = DDMConfig(warning_level=2.0,
                   drift_level=3.0,
                   min_num_instances=30,)
detector = DDM(config=config)

# Simulate data stream (assuming test label available after prediction)
for i, (X, y) in enumerate(zip(X_test, y_test)):
    y_pred = pipeline.predict(X.reshape(1, -1))
    error = 1 - int(y_pred == y)
    detector.update(value=error)
    status = detector.status
    if status["drift"]:
        print(f"Drift detected at index {i}")
        break

>> Drift detected at index 44

More concept drift examples can be found here.

Data drift

As a quick example, we can use the iris dataset to which data drift in order to show the use of a data drift detector like Kolmogorov-Smirnov test.

import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier

from frouros.detectors.data_drift import KSTest

np.random.seed(seed=31)

# Load iris dataset
X, y = load_iris(return_X_y=True)

# Split train (70%) and test (30%)
(
    X_train,
    X_test,
    y_train,
    y_test,
) = train_test_split(X, y, train_size=0.7, random_state=31)

# Set the feature index to which detector is applied
dim_idx = 0

# IMPORTANT: Induce/simulate data drift in the selected feature of y_test by
# applying some gaussian noise. Therefore, changing P(X))
X_test[:, dim_idx] += np.random.normal(
    loc=0.0,
    scale=3.0,
    size=X_test.shape[0],
)

# Define and fit model
model = DecisionTreeClassifier(random_state=31)
model.fit(X=X_train, y=y_train)

# Set significance level for hypothesis testing
alpha = 0.001
# Define and fit detector
detector = KSTest()
detector.fit(X=X_train[:, dim_idx])

# Apply detector to the selected feature of X_test
result = detector.compare(X=X_test[:, dim_idx])

# Check if drift is taking place
result[0].p_value < alpha
>> True # Data drift detected.
# Therefore, we can reject H0 (both samples come from the same distribution).

More data drift examples can be found here.

🛠 Installation

Frouros can be installed via pip:

pip install frouros

🕵🏻‍♂️️ Drift detection methods

The currently implemented detectors are listed in the following diagram.

Detectors diagram

👍 Contributing

Check out the contribution section.

💬 Citation

Although Frouros paper is still in preprint, if you want to cite it you can use the preprint version (to be replaced by the paper once is published).

@article{cespedes2022frouros,
  title={Frouros: A Python library for drift detection in Machine Learning problems},
  author={C{\'e}spedes Sisniega, Jaime and L{\'o}pez Garc{\'\i}a, {\'A}lvaro },
  journal={arXiv preprint arXiv:2208.06868},
  year={2022}
}

📝 License

Frouros is an open-source software licensed under the BSD-3-Clause license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

frouros-0.2.2.tar.gz (57.8 kB view details)

Uploaded Source

Built Distribution

frouros-0.2.2-py3-none-any.whl (94.0 kB view details)

Uploaded Python 3

File details

Details for the file frouros-0.2.2.tar.gz.

File metadata

  • Download URL: frouros-0.2.2.tar.gz
  • Upload date:
  • Size: 57.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for frouros-0.2.2.tar.gz
Algorithm Hash digest
SHA256 2aa648a42951e535ecd01bf2a9c7f50c6140a5b1771d4c2d2abbd075dc2ae967
MD5 249f39ad89c8f9cd53eb907ec99b47a0
BLAKE2b-256 23852f4ec75c5ab736bd00da89665f1bc5ae343da64b0348692295dfd5cfeb40

See more details on using hashes here.

File details

Details for the file frouros-0.2.2-py3-none-any.whl.

File metadata

  • Download URL: frouros-0.2.2-py3-none-any.whl
  • Upload date:
  • Size: 94.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for frouros-0.2.2-py3-none-any.whl
Algorithm Hash digest
SHA256 2687a1e8229e530c84130b33d72fb09435df4f71dc7f4c8129d3b6bb982aa87c
MD5 5b4c23ca0971721b036b75b2db04a20d
BLAKE2b-256 2a2a1a7719f37a1417d18d467e055871f0f36b168a3961c98927e23d272d8e31

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page