Skip to main content

Submit Functional Queries to a ServiceX endpoint.

Project description

func_adl_servicex

Send func_adl expressions to a ServiceX endpoint

GitHub Actions Status Code Coverage

PyPI version Supported Python versions

Introduction

This package contains the single object ServiceXSourceXAOD and ``ServiceXSourceUpROOTwhich can be used as a root of afunc_adl` expression to query large LHC datasets from an active `ServiceX` instance located on the net.

See below for simple examples.

Further Information

  • servicex documentation
  • func_adl documentation

Usage

To use func_adl on servicex, the only func_adl package you only need to install this package. All others required will be pulled in as dependencies of this package.

Using the xAOD backend

See the further information for documentation above to understand how this works. Here is a quick sample that will run against an ATLAS xAOD backend in servicex to get out jet pt's for those jets with pt > 30 GeV.

from func_adl_servicex import ServiceXSourceXAOD

dataset_xaod = "mc15_13TeV:mc15_13TeV.361106.PowhegPythia8EvtGen_AZNLOCTEQ6L1_Zee.merge.DAOD_STDM3.e3601_s2576_s2132_r6630_r6264_p2363_tid05630052_00"
ds = ServiceXSourceXAOD(dataset_xaod)
data = ds \
    .SelectMany('lambda e: (e.Jets("AntiKt4EMTopoJets"))') \
    .Where('lambda j: (j.pt()/1000)>30') \
    .Select('lambda j: j.pt()') \
    .AsAwkwardArray(["JetPt"]) \
    .value()

print(data['JetPt'])

Using the CMS Run 1 AOD backend

See the further information for documentation above to understand how this works. Here is a quick sample that will run against an CMS Run 1 AOD backend in servicex. It turns against a 6 TB CMS Open Data dataset, selecting global muons with a pT greater than 30 GeV.

from func_adl_servicex import ServiceXSourceCMSRun1AOD

dataset_xaod = "cernopendata://16"
ds = ServiceXSourceCMSRun1AOD(dataset_xaod)
data = ds \
data = ServiceXSourceCMSRun1AOD("cernopendata://16") \
    .SelectMany(lambda e: e.TrackMuons("globalMuons")) \
    .Where(lambda m: m.pt() > 30) \
    .Select(lambda m: m.pt()) \
    .AsAwkwardArray(['mu_pt']) \
    .value()

print(data['mu_pt'])

Using the uproot backend

See the further information for documentation above to understand how this works. Here is a quick sample that will run against a ROOT file (TTree) in the uproot backend in servicex to get out jet pt's. Note that the image name tag is likely wrong here. See XXX to get the current one.

from servicex import ServiceXDataset
from func_adl_servicex import ServiceXSourceUpROOT


dataset_uproot = "user.kchoi:user.kchoi.ttHML_80fb_ttbar"
uproot_transformer_image = "sslhep/servicex_func_adl_uproot_transformer:issue6"

sx_dataset = ServiceXDataset(dataset_uproot, image=uproot_transformer_image)
ds = ServiceXSourceUpROOT(sx_dataset, "nominal")
data = ds.Select("lambda e: {'lep_pt_1': e.lep_Pt_1, 'lep_pt_2': e.lep_Pt_2}") \
    .AsParquetFiles('junk.parquet') \
    .value()

print(data)

Development

PR's are welcome! Feel free to add an issue for new features or questions.

The master branch is the most recent commits that both pass all tests and are slated for the next release. Releases are tagged. Modifications to any released versions are made off those tags.

Qastle

This is for people working with the back-ends that run in servicex.

This is the qastle produced for an xAOD dataset:

(call EventDataset 'ServiceXDatasetSource')

(the actual dataset name is passed in the servicex web API call.)

This is the qastle produced for a ROOT flat file:

(call EventDataset 'ServiceXDatasetSource' 'tree_name')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

func_adl_servicex-1.1.3.tar.gz (5.9 kB view details)

Uploaded Source

Built Distribution

func_adl_servicex-1.1.3-py3-none-any.whl (6.1 kB view details)

Uploaded Python 3

File details

Details for the file func_adl_servicex-1.1.3.tar.gz.

File metadata

  • Download URL: func_adl_servicex-1.1.3.tar.gz
  • Upload date:
  • Size: 5.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for func_adl_servicex-1.1.3.tar.gz
Algorithm Hash digest
SHA256 d4be0ce3c3d042678c6615177a689b121444697676df8a7f0226051f0cedf99d
MD5 1f476fea9952c2b4d59a086ebb1caa02
BLAKE2b-256 9c80373d1118669cb2da1f5ba9f20d2f65ecc0e2327592563fb0e716c1683fd5

See more details on using hashes here.

Provenance

File details

Details for the file func_adl_servicex-1.1.3-py3-none-any.whl.

File metadata

  • Download URL: func_adl_servicex-1.1.3-py3-none-any.whl
  • Upload date:
  • Size: 6.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for func_adl_servicex-1.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 3b0a3bfd74d0b28ccc4d57f8df5f1b3bf4abd680c2477132017f8d4d0d13567e
MD5 614365b39196c7acd6e58deea0bae409
BLAKE2b-256 7ed5ebf650c808f180419277a24c7ff601c2f4545bbaf84d679e63b51eb5a667

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page