Skip to main content

A Python package for interactive mapping using Google Earth Engine and ipyleaflet

Project description

geemap

https://colab.research.google.com/assets/colab-badge.svg https://mybinder.org/badge_logo.svg https://binder.pangeo.io/badge_logo.svg https://img.shields.io/pypi/v/geemap.svg https://img.shields.io/conda/vn/conda-forge/geemap.svg https://pepy.tech/badge/geemap https://img.shields.io/travis/giswqs/geemap.svg https://readthedocs.org/projects/geemap/badge/?version=latest https://img.shields.io/twitter/follow/giswqs?style=social https://img.shields.io/badge/License-MIT-yellow.svg

Authors: Dr. Qiusheng Wu (https://wetlands.io)

A Python package for interactive mapping with Google Earth Engine, ipyleaflet, and ipywidgets.

Contents

Features

  • Automatically converts Earth Engine JavaScripts to Python scripts and Jupyter Notebooks.

  • Adds Earth Engine tile layers to ipyleaflet map for interactive mapping.

  • Supports Earth Engine JavaScript API functions in Python, such as Map.addLayer(), Map.setCenter(), Map.centerObject(), Map.setOptions().

  • Captures user input and query Earth Engine objects.

  • Plots charts based on Earth Engine data.

Installation

The geemap Python package is built upon the ipyleaflet and folium packages and implements several methods for interacting with Earth Engine data layers, such as Map.addLayer(), Map.setCenter(), and Map.centerObject().

To install geemap, run this command in your terminal:

pip install geemap

geemap is also available on conda-forge. If you have Anaconda or Miniconda installed on your computer, you can create a conda Python environment to install geemap:

conda create -n gee python
conda activate gee
conda install -c conda-forge geemap

If you have installed geemap before and want to upgrade to the latest version, you can run the following command in your terminal:

pip install -U geemap

To install the development version from GitHub, run the following command in your terminal:

pip install git+https://github.com/giswqs/geemap

Usage

Important note: A key difference between ipyleaflet and folium is that ipyleaflet is built upon ipywidgets and allows bidirectional communication between the front-end and the backend enabling the use of the map to capture user input, while folium is meant for displaying static data only (source). Note that Google Colab currently does not support ipyleaflet (source). Therefore, if you are using geemap with Google Colab, you should use import geemap.eefolium. If you are using geemap with binder or a local Jupyter notebook server, you can use import geemap, which provides more functionalities for capturing user input (e.g., mouse-clicking and moving).

To create an ipyleaflet-based interactive map:

import geemap
Map = geemap.Map(center=[40,-100], zoom=4)
Map

To create a folium-based interactive map:

import geemap.eefolium as emap
Map = emap.Map(center=[40,-100], zoom=4)
Map

To add an Earth Engine data layer to the Map:

Map.addLayer(ee_object, vis_params, name, shown, opacity)

To center the map view at a given coordinates with the given zoom level:

Map.setCenter(lon, lat, zoom)

To center the map view around an Earth Engine object:

Map.centerObject(ee_object, zoom)

To add LayerControl to a folium-based Map:

Map.addLayerControl()

To add a minimap (overview) to an ipyleaflet-based Map:

Map.add_minimap()

To add additional basemaps to the Map:

Map.add_basemap('Esri Ocean')
Map.add_basemap('Esri National Geographic')

To add an XYZ tile layer to the Map:

url = 'https://mt1.google.com/vt/lyrs=m&x={x}&y={y}&z={z}'
Map.add_tile_layer(url, name='Google Map', attribution='Google')

To add a WMS layer to the Map:

naip_url = 'https://services.nationalmap.gov/arcgis/services/USGSNAIPImagery/ImageServer/WMSServer?'
Map.add_wms_layer(url=naip_url, layers='0', name='NAIP Imagery', format='image/png', shown=True)

To convert all GEE JavaScripts in a folder recursively to Python scripts:

from geemap.conversion import *
js_to_python_dir(in_dir, out_dir)

To convert all GEE Python scripts in a folder recursively to Jupyter notebooks:

from geemap.conversion import *
template_file = get_nb_template()
py_to_ipynb_dir(in_dir, template_file, out_dir)

To execute all Jupyter notebooks in a folder recursively and save output cells:

from geemap.conversion import *
execute_notebook_dir(in_dir)

Examples

The following examples require the geemap package, which can be installed using pip install geemap. Check the Installation section for more information. More examples can be found at another repo: A collection of 300+ Jupyter Python notebook examples for using Google Earth Engine with interactive mapping.

Converting GEE JavaScripts to Python scripts and Jupyter notebooks

Launch an interactive notebook with Google Colab, mybinder.org, or binder.pangeo.io. Keep in mind that the conversion might not always work perfectly. Additional manual changes might still be needed. ui and chart are not supported. The source code for this automated conversion module can be found at conversion.py.

https://colab.research.google.com/assets/colab-badge.svg https://mybinder.org/badge_logo.svg https://binder.pangeo.io/badge_logo.svg
import os
from geemap.conversion import *

# Create a temporary working directory
work_dir = os.path.join(os.path.expanduser('~'), 'geemap')
# Get Earth Engine JavaScript examples. There are five examples in the geemap package folder.
# Change js_dir to your own folder containing your Earth Engine JavaScripts, such as js_dir = '/path/to/your/js/folder'
js_dir = get_js_examples(out_dir=work_dir)

# Convert all Earth Engine JavaScripts in a folder recursively to Python scripts.
js_to_python_dir(in_dir=js_dir, out_dir=js_dir, use_qgis=True)
print("Python scripts saved at: {}".format(js_dir))

# Convert all Earth Engine Python scripts in a folder recursively to Jupyter notebooks.
nb_template = get_nb_template()  # Get the notebook template from the package folder.
py_to_ipynb_dir(js_dir, nb_template)

# Execute all Jupyter notebooks in a folder recursively and save the output cells.
execute_notebook_dir(in_dir=js_dir)
https://i.imgur.com/8bedWtl.gif

Interactive mapping using GEE Python API and geemap

Launch an interactive notebook with mybinder.org or binder.pangeo.io. Note that Google Colab currently does not support ipyleaflet. Therefore, you should use import geemap.eefolium instead of import geemap.

https://colab.research.google.com/assets/colab-badge.svg https://mybinder.org/badge_logo.svg https://binder.pangeo.io/badge_logo.svg
# Installs geemap package
import subprocess

try:
        import geemap
except ImportError:
        print('geemap package not installed. Installing ...')
        subprocess.check_call(["python", '-m', 'pip', 'install', 'geemap'])

# Checks whether this notebook is running on Google Colab
try:
        import google.colab
        import geemap.eefolium as emap
except:
        import geemap as emap

# Authenticates and initializes Earth Engine
import ee

try:
        ee.Initialize()
except Exception as e:
        ee.Authenticate()
        ee.Initialize()

# Creates an interactive map
Map = emap.Map(center=[40,-100], zoom=4)

# Adds Earth Engine dataset
image = ee.Image('USGS/SRTMGL1_003')

# Sets visualization parameters.
vis_params = {
        'min': 0,
        'max': 4000,
        'palette': ['006633', 'E5FFCC', '662A00', 'D8D8D8', 'F5F5F5']}

# Prints the elevation of Mount Everest.
xy = ee.Geometry.Point([86.9250, 27.9881])
elev = image.sample(xy, 30).first().get('elevation').getInfo()
print('Mount Everest elevation (m):', elev)

# Adds Earth Engine layers to Map
Map.addLayer(image, vis_params, 'SRTM DEM', True, 0.5)
Map.addLayer(xy, {'color': 'red'}, 'Mount Everest')
Map.setCenter(100, 40, 4)
# Map.centerObject(xy, 13)

# Display the Map
Map.addLayerControl()
Map
https://i.imgur.com/7NMQw6I.gif

Dependencies

Reporting Bugs

Report bugs at https://github.com/giswqs/geemap/issues.

If you are reporting a bug, please include:

  • Your operating system name and version.

  • Any details about your local setup that might be helpful in troubleshooting.

  • Detailed steps to reproduce the bug.

Credits

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

History

0.4.0 (2020-03-19)

0.3.0 (2020-03-18)

0.2.0 (2020-03-17)

0.1.0 (2020-03-08)

  • First release on PyPI.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

geemap-0.5.0.tar.gz (39.2 kB view details)

Uploaded Source

Built Distribution

geemap-0.5.0-py2.py3-none-any.whl (34.0 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file geemap-0.5.0.tar.gz.

File metadata

  • Download URL: geemap-0.5.0.tar.gz
  • Upload date:
  • Size: 39.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.1 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.0

File hashes

Hashes for geemap-0.5.0.tar.gz
Algorithm Hash digest
SHA256 8981bc06539e03530c361700f5e6c8a04a597f3184131576363fd061a42cf8d5
MD5 9dc0a78f554e732834b4daafaf1d8fe4
BLAKE2b-256 48cb34f01bbdb1eeee6516195b54635a6fe651f02196b4e4e446c7b96eacf26a

See more details on using hashes here.

File details

Details for the file geemap-0.5.0-py2.py3-none-any.whl.

File metadata

  • Download URL: geemap-0.5.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 34.0 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.1 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.0

File hashes

Hashes for geemap-0.5.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 b4c205b1e087787a0452d08cbd9668925db2cf7c39eff19af0582d2c7936a16c
MD5 be4076cfe6086f501d720f3ddf7a7e0c
BLAKE2b-256 71e57232b9c119c680ad1cf72f6cf40c2343f2dbec64446e79447affb6acc447

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page