Skip to main content

Spatial data examples

Project description

geodatasets

Fetch links or download and cache spatial data example files.

The geodatasets contains an API on top of a JSON with metadata of externally hosted datasets containing geospatial information useful for illustrative and educational purposes.

See the documentation at geodatasets.readthedocs.io/.

Install

From PyPI:

pip install geodatasets

or using conda or mamba from conda-forge:

conda install geodatasets -c conda-forge

The development version can be installed using pip from GitHub.

pip install git+https://github.com/geopandas/geodatasets.git

How to use

The package comes with a database of datasets. To see all:

In [1]: import geodatasets

In [2]: geodatasets.data
Out[2]:
{'geoda': {'airbnb': {'url': 'https://geodacenter.github.io/data-and-lab//data/airbnb.zip',
   'license': 'NA',
   'attribution': 'Center for Spatial Data Science, University of Chicago',
   'name': 'geoda.airbnb',
   'description': 'Airbnb rentals, socioeconomics, and crime in Chicago',
   'geometry_type': 'Polygon',
   'nrows': 77,
   'ncols': 21,
   'details': 'https://geodacenter.github.io/data-and-lab//airbnb/',
   'hash': 'a2ab1e3f938226d287dd76cde18c00e2d3a260640dd826da7131827d9e76c824',
   'filename': 'airbnb.zip'},
  'atlanta': {'url': 'https://geodacenter.github.io/data-and-lab//data/atlanta_hom.zip',
   'license': 'NA',
   'attribution': 'Center for Spatial Data Science, University of Chicago',
   'name': 'geoda.atlanta',
   'description': 'Atlanta, GA region homicide counts and rates',
   'geometry_type': 'Polygon',
   'nrows': 90,
   'ncols': 24,
   'details': 'https://geodacenter.github.io/data-and-lab//atlanta_old/',
   'hash': 'a33a76e12168fe84361e60c88a9df4856730487305846c559715c89b1a2b5e09',
   'filename': 'atlanta_hom.zip',
   'members': ['atlanta_hom/atl_hom.geojson']},
   ...

There is also a convenient top-level API. One to get only the URL:

In [3]: geodatasets.get_url("geoda airbnb")
Out[3]: 'https://geodacenter.github.io/data-and-lab//data/airbnb.zip'

And one to get the local path. If the file is not available in the cache, it will be downloaded first.

In [4]: geodatasets.get_path('geoda airbnb')
Out[4]: '/Users/martin/Library/Caches/geodatasets/airbnb.zip'

You can also get all the details:

In [5]: geodatasets.data.geoda.airbnb
Out[5]:
{'url': 'https://geodacenter.github.io/data-and-lab//data/airbnb.zip',
 'license': 'NA',
 'attribution': 'Center for Spatial Data Science, University of Chicago',
 'name': 'geoda.airbnb',
 'description': 'Airbnb rentals, socioeconomics, and crime in Chicago',
 'geometry_type': 'Polygon',
 'nrows': 77,
 'ncols': 21,
 'details': 'https://geodacenter.github.io/data-and-lab//airbnb/',
 'hash': 'a2ab1e3f938226d287dd76cde18c00e2d3a260640dd826da7131827d9e76c824',
 'filename': 'airbnb.zip'}

Or using the name query:

In [6]: geodatasets.data.query_name('geoda airbnb')
Out[6]:
{'url': 'https://geodacenter.github.io/data-and-lab//data/airbnb.zip',
 'license': 'NA',
 'attribution': 'Center for Spatial Data Science, University of Chicago',
 'name': 'geoda.airbnb',
 'description': 'Airbnb rentals, socioeconomics, and crime in Chicago',
 'geometry_type': 'Polygon',
 'nrows': 77,
 'ncols': 21,
 'details': 'https://geodacenter.github.io/data-and-lab//airbnb/',
 'hash': 'a2ab1e3f938226d287dd76cde18c00e2d3a260640dd826da7131827d9e76c824',
 'filename': 'airbnb.zip'}

The whole structure Bunch class is based on a dictionary and can be flattened. If you want to see all available datasets, you can use:

In [7]: geodatasets.data.flatten().keys()
Out[7]: dict_keys(['geoda.airbnb', 'geoda.atlanta', 'geoda.cars', 'geoda.charleston1', 'geoda.charleston2', 'geoda.chicago_health', 'geoda.chicago_commpop', 'geoda.chile_labor', 'geoda.cincinnati', 'geoda.cleveland', 'geoda.columbus', 'geoda.grid100', 'geoda.groceries', 'geoda.guerry', 'geoda.health', 'geoda.health_indicators', 'geoda.hickory1', 'geoda.hickory2', 'geoda.home_sales', 'geoda.houston', 'geoda.juvenile', 'geoda.lansing1', 'geoda.lansing2', 'geoda.lasrosas', 'geoda.liquor_stores', 'geoda.malaria', 'geoda.milwaukee1', 'geoda.milwaukee2', 'geoda.ncovr', 'geoda.natregimes', 'geoda.ndvi', 'geoda.nepal', 'geoda.nyc', 'geoda.nyc_earnings', 'geoda.nyc_education', 'geoda.nyc_neighborhoods', 'geoda.orlando1', 'geoda.orlando2', 'geoda.oz9799', 'geoda.phoenix_acs', 'geoda.police', 'geoda.sacramento1', 'geoda.sacramento2', 'geoda.savannah1', 'geoda.savannah2', 'geoda.seattle1', 'geoda.seattle2', 'geoda.sids', 'geoda.sids2', 'geoda.south', 'geoda.spirals', 'geoda.stlouis', 'geoda.tampa1', 'geoda.us_sdoh', 'ny.bb', 'eea.large_rivers', 'naturalearth.land'])

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

geodatasets-2024.8.0.tar.gz (457.8 kB view details)

Uploaded Source

Built Distribution

geodatasets-2024.8.0-py3-none-any.whl (20.0 kB view details)

Uploaded Python 3

File details

Details for the file geodatasets-2024.8.0.tar.gz.

File metadata

  • Download URL: geodatasets-2024.8.0.tar.gz
  • Upload date:
  • Size: 457.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for geodatasets-2024.8.0.tar.gz
Algorithm Hash digest
SHA256 ea1b0f885f1b3305d4a308b2ddee042e425c5288b5ff6b00e6b0ac74a4d5e8d9
MD5 809608a9a8deb0fc9edc0f20bf284117
BLAKE2b-256 c51937a772bf09a9758eb1c09ed9ad6a11dcf0435dadd89bc46e3f78d709f353

See more details on using hashes here.

Provenance

File details

Details for the file geodatasets-2024.8.0-py3-none-any.whl.

File metadata

File hashes

Hashes for geodatasets-2024.8.0-py3-none-any.whl
Algorithm Hash digest
SHA256 fd2a91618277553dbb180496bb952d496e4bc99e8c0066c5dc06701d66d53540
MD5 12e1251d515c2540f5ef1c41bfb35e4f
BLAKE2b-256 9ddde30e144271280d263c0c10f34fbcf2e09e9a82bd11a165c5f1f498899a29

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page