Skip to main content

geosnap: Open-Source Neighborhood Analysis Package.

Project description

Geospatial Neighborhood Analysis in Python

Build Status Coverage Status

geosnap

geosnap is an open-source, Python3 package for exploring, modeling, and visualizing neighborhood dynamics. Although neighborhoods are critically important for human development and public policy, they present a variety of novel challenges for urban researchers:

  • there is no formally accepted scientific definition of "neighborhood"
  • neighborhoods evolve through both space and time
  • many different physical and social data can characterize a neighborhood
  • primitive spatial units change boundaries over time

geosnap aims to help fill these gaps. It provides a suite of tools for creating socio-spatial datasets, harmonizing those datasets into consistent set of time-static boundaries, and modeling neighborhood change using classic and spatial statistical methods.

DC Transitions

Since there is no accepted definition of "neighborhood," most quantitative studies involving neighborhood effects or neighborhood dynamics use census data and their administrative boundaries to define spatial areas that reasonably approximate neighborhoods. In the U.S., this typically means using census tracts, since they have a relatively small spatial footprint and a wide variety of variables are tabulated at that scale. For this reason, geosnap's first release is targeted at researchers working with US Census tract data. This allows the software to make available a wide variety of data and commonly-used variables with minimal interaction from the end-user. Later releases will expand functionality to other geographies and data sources.

Modules:

data

Ingest, create, and manipulate space-time datasets

analyze

Analyze and model neighborhood dynamics

harmonize

Harmonize neighborhood boundaries into consistent, stable units using spatial statistical methods

visualize

Visualize neighborhood dynamics

Installation

The recommended method for installing geosnap is with anaconda. To get started with the development version, clone this repository or download it manually then cd into the directory and run the following commands:

$ conda env create -f environment.yml
$ source activate geosnap 
$ python setup.py develop

This will download the appropriate dependencies and install geosnap in its own conda environment.

Getting Started

The quickest way to get started analyzing the space-time dynamics of neighborhoods is by importing a longitudinal dataset that has already been harmonized into consistent boundaries. We recommend the (free) Longitudinal Tract Database to get started.

You can import LTDB using the instructions in this example notebook. Note: you only need to import the database once and it will be stored inside geosnap for repeated queries

Once the LTDB data is installed, check out the other notebooks in the example directory, then start ipython or a Jupyter Notebook and hack away

Development

geosnap development is hosted on github

Bug reports

To search for or report bugs, please see geosnap's issues

License information

See the file "LICENSE.txt" for information on the history of this software, terms & conditions for usage, and a DISCLAIMER OF ALL WARRANTIES.

Funding

This project is supported by NSF Award #1733705, Neighborhoods in Space-Time Contexts

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

geosnap-0.0.2.tar.gz (9.1 MB view details)

Uploaded Source

Built Distribution

geosnap-0.0.2-py3-none-any.whl (176.5 kB view details)

Uploaded Python 3

File details

Details for the file geosnap-0.0.2.tar.gz.

File metadata

  • Download URL: geosnap-0.0.2.tar.gz
  • Upload date:
  • Size: 9.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.21.0

File hashes

Hashes for geosnap-0.0.2.tar.gz
Algorithm Hash digest
SHA256 87a45285afc0899877785f14fc3ee56dc1476175289f30b2658c19a4dc26ac31
MD5 04557cc1413c66e02c91ae7dbd722469
BLAKE2b-256 8597270b11191717a62c97421945705faad3e13fd2f94018fdd5dc9812fe79dc

See more details on using hashes here.

File details

Details for the file geosnap-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: geosnap-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 176.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.21.0

File hashes

Hashes for geosnap-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 4dc0db1e4b2905b2ba8cf69bf9011d9eea5ab7834e4fdff19616bc0be94611d9
MD5 8dbacd03446f8bfce559768d2c4e05e1
BLAKE2b-256 99d9a4f805ad6bf6842380f243ab990f0d56f612af02402e2ff39a7b614a767f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page