Skip to main content

A Distributed DataFrame library for large scale complex data processing.

Reason this release was yanked:

Binary Wheel is built with wrong version of pyarrow (9.0 vs 6.0)

Project description

daft

Welcome to Daft

Daft is a fast, ergonomic and scalable open-source dataframe library: built for Python and Complex Data/Machine Learning workloads.

Frame 113

Installation

Install Daft with pip install getdaft.

Documentation

Learn more about Daft in our documentation.

Community

For questions about Daft, please post in our community hosted on GitHub Discussions. We look forward to meeting you there!

Why Daft?

Processing Complex Data such as images/audio/pointclouds often requires accelerated compute for geometric or machine learning algorithms, much of which leverages existing tooling from the Python/C++ ecosystem. However, many workloads such as analytics, model training data curation and data processing often also require relational query operations for loading/filtering/joining/aggregations.

Daft marries the two worlds with a Dataframe API, enabling you to run both large analytical queries and powerful Complex Data algorithms from the same interface.

  1. Python-first: Python and Jupyter notebooks are first-class citizens. Daft handles any Python libraries and datastructures natively - use any Python library such as Numpy, OpenCV and PyTorch for Complex Data processing.

  2. Laptop to Cloud: Daft is built to run as easily on your laptop for interactive development and on your own Ray cluster or Eventual deployment for terabyte-scale production workloads.

  3. Open Data Formats: Daft loads from and writes to open data formats such as Apache Parquet and Apache Iceberg. It also supports all major cloud vendors' object storage options, allowing you to easily integrate with your existing storage solutions.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

getdaft-0.0.12.tar.gz (139.9 kB view details)

Uploaded Source

Built Distributions

getdaft-0.0.12-cp310-cp310-manylinux_2_17_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

getdaft-0.0.12-cp310-cp310-macosx_11_0_x86_64.whl (283.7 kB view details)

Uploaded CPython 3.10 macOS 11.0+ x86-64

getdaft-0.0.12-cp310-cp310-macosx_11_0_arm64.whl (270.6 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

getdaft-0.0.12-cp39-cp39-manylinux_2_17_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

getdaft-0.0.12-cp39-cp39-macosx_11_0_x86_64.whl (284.1 kB view details)

Uploaded CPython 3.9 macOS 11.0+ x86-64

getdaft-0.0.12-cp39-cp39-macosx_11_0_arm64.whl (271.0 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

getdaft-0.0.12-cp38-cp38-manylinux_2_17_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

getdaft-0.0.12-cp38-cp38-macosx_11_0_arm64.whl (270.8 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

getdaft-0.0.12-cp38-cp38-macosx_10_16_x86_64.whl (284.1 kB view details)

Uploaded CPython 3.8 macOS 10.16+ x86-64

getdaft-0.0.12-cp37-cp37m-manylinux_2_17_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

getdaft-0.0.12-cp37-cp37m-macosx_10_16_x86_64.whl (283.5 kB view details)

Uploaded CPython 3.7m macOS 10.16+ x86-64

File details

Details for the file getdaft-0.0.12.tar.gz.

File metadata

  • Download URL: getdaft-0.0.12.tar.gz
  • Upload date:
  • Size: 139.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.7

File hashes

Hashes for getdaft-0.0.12.tar.gz
Algorithm Hash digest
SHA256 c74f73bbd2502940cb433a917e184feedb58a03b120208674f3c26e8a7e468de
MD5 f64258f7485f6a99a1feb9d591926bfd
BLAKE2b-256 fefdc67e65e4f0fa10895758f2347976191dfc816ce054944ac00ea94bbdcf1f

See more details on using hashes here.

File details

Details for the file getdaft-0.0.12-cp310-cp310-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for getdaft-0.0.12-cp310-cp310-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 b5516d30d535876d82a0e19313e4f16ad532e00fc892833f9556b56eccb04931
MD5 0250fb7ce55e41ec571bf29ca69d9bf4
BLAKE2b-256 5ca24a92523b89d926ef30df516ca20f29452354bd250899900ff959b8a88594

See more details on using hashes here.

File details

Details for the file getdaft-0.0.12-cp310-cp310-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for getdaft-0.0.12-cp310-cp310-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 43dac59d8e1d771421841f11a5b67881416cd91d7188f1c4842fa0fa8017457c
MD5 c8dd31c68757c78ba1e7478134eee452
BLAKE2b-256 1a5d7871ea642c46d49ce3b6d2db6106b7fd8bac359f6abf34b3dd100f1c0491

See more details on using hashes here.

File details

Details for the file getdaft-0.0.12-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for getdaft-0.0.12-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a2678a7218ece48401e1da593e2a6d8dcd282a43d39d90b5ec546afa4fa74bee
MD5 851719d91a739be9b6e17fb3dd87e496
BLAKE2b-256 0d5c1f6d748b0465271555e7e86b4f59f0b21ed3e8ac136ab34ce398d30ddcf2

See more details on using hashes here.

File details

Details for the file getdaft-0.0.12-cp39-cp39-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for getdaft-0.0.12-cp39-cp39-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 34900ff1ba85a57ee11b3b7da17f5149799ce11135f0f12a35708b140a8c8f46
MD5 e711956263cbc696e01760c284817a61
BLAKE2b-256 50442451aa4c903de6fc5f23abd4531d7b4beeaafd6bdcfb0e40beb5eed47f75

See more details on using hashes here.

File details

Details for the file getdaft-0.0.12-cp39-cp39-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for getdaft-0.0.12-cp39-cp39-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 90b5b571fee4d2627ec4e076922031f67260f84112454831d7c5726fade7016d
MD5 cb4d16deaa87a4cbd5e9c7bbe8daca5a
BLAKE2b-256 08a9e674e28a02d9ce9a04b769c2eaed82436a8171c282f930c6777a498468b6

See more details on using hashes here.

File details

Details for the file getdaft-0.0.12-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for getdaft-0.0.12-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 699fe5b9c517baa01928922692eddfdd9134823d9e93ba570cc3d1cfd4f97820
MD5 3c782501d4beaa91ea752536b637dcb9
BLAKE2b-256 0a469dd83a0568cd9d823da687564563487a4bc42559a281b61b7fa8eaebe069

See more details on using hashes here.

File details

Details for the file getdaft-0.0.12-cp38-cp38-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for getdaft-0.0.12-cp38-cp38-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 db78f5ef848a34ea276a4980a3794adc7a8a0465c7c431534ec718936c933467
MD5 177a14f8f966b86dd5cdb83487bad938
BLAKE2b-256 e5fbd894ecd8d723eb2f2f091cef97cdef1d0cd5e1df89a7b82cf1dfab3a8d1c

See more details on using hashes here.

File details

Details for the file getdaft-0.0.12-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for getdaft-0.0.12-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 dde228d9d0835923cfb57fc6a94ad0e7704afd10ad63a37f99fbaa89a8863b37
MD5 19aa1ffbb4024de6c65a38832cd7d507
BLAKE2b-256 3a984bb66cebe7b0a5dd32e6db667a956fdb8e747a5bce2b6d1b9134636ef6b8

See more details on using hashes here.

File details

Details for the file getdaft-0.0.12-cp38-cp38-macosx_10_16_x86_64.whl.

File metadata

File hashes

Hashes for getdaft-0.0.12-cp38-cp38-macosx_10_16_x86_64.whl
Algorithm Hash digest
SHA256 95f608d56ca194dc3d53db18c3aa70aac1a8bdedfa66855dea99517a00c11f9b
MD5 14f092923553db332e6d85b8709c2123
BLAKE2b-256 b03c8f7baa9680648fae402125bfa16d1bb13905573a327e52e72251e8429898

See more details on using hashes here.

File details

Details for the file getdaft-0.0.12-cp37-cp37m-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for getdaft-0.0.12-cp37-cp37m-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 e6d5ab3202c7bb26cba538db3b8ab88fd44cfc84c696b2a67ff92bd689cea86e
MD5 71ca758d917c39f28d05e929683b53aa
BLAKE2b-256 ae54f8847b2dabc86a59cea11b1a6a4f69b28cb94da3a078ff7651dbdc2e9b59

See more details on using hashes here.

File details

Details for the file getdaft-0.0.12-cp37-cp37m-macosx_10_16_x86_64.whl.

File metadata

File hashes

Hashes for getdaft-0.0.12-cp37-cp37m-macosx_10_16_x86_64.whl
Algorithm Hash digest
SHA256 a26ead6e6985f2b09c15486d9bcd2c2028a50e242366242e0e96f1f47e00e929
MD5 4e5ded01bc379c19dc12cc28542057b6
BLAKE2b-256 e9a60f47239c8926115c048253a29ddbeb6788157934066d0699f77528f3738e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page