Gin-Config: A lightweight configuration library for Python
Project description
Gin
Gin provides a lightweight configuration framework for Python, based on
dependency injection. Functions or classes can be decorated with
@gin.configurable
, allowing default parameter values to be supplied from a
config file (or passed via the command line) using a simple but powerful syntax.
This removes the need to define and maintain configuration objects (e.g.
protos), or write boilerplate parameter plumbing and factory code, while often
dramatically expanding a project's flexibility and configurability.
Gin is particularly well suited for machine learning experiments (e.g. using TensorFlow), which tend to have many parameters, often nested in complex ways.
Authors: Dan Holtmann-Rice, Sergio Guadarrama, Nathan Silberman Contributors: Oscar Ramirez, Marek Fiser
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
Hashes for gin_config-0.4.0-py2.py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 774aa7855cd7eca839e796e394159a96060660296b3ca9fbbbf9af427fd152ba |
|
MD5 | 57f47c50d7bddda3167d212ed8d52eae |
|
BLAKE2b-256 | d7b1c4950247902f430376c7d9c8a7811269150e66e0207b74330de181dd6779 |
Hashes for gin_config-0.4.0-py2-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | d35cd8cdf1d6fdd599ea27daf71dff29de00feb2357cc96b469d2e9a91372a86 |
|
MD5 | 815e83ce7a873e50cb291aff2d5d06c9 |
|
BLAKE2b-256 | 0e6fb6d56bd676367cb0b3543233b133795d39e8c8f23fdeaa13cae0afc1bfa5 |