Skip to main content

A declarative object transformer and formatter, for conglomerating nested data.

Project description

glom

Restructuring data, the Python way

Real applications have real data, and real data nests. Objects inside of objects inside of lists of objects.

glom is a new and powerful way to handle real-world data, featuring:

  • Path-based access for nested data structures
  • Readable, meaningful error messages
  • Declarative data transformation, using lightweight, Pythonic specifications
  • Built-in data exploration and debugging features

All of that and more, available as a fully-documented, pure-Python package, tested on Python 2.7-3.7, as well as PyPy. Installation is as easy as:

  pip install glom

And when you install glom, you also get the glom command-line interface, letting you experiment at the console, but never limiting you to shell scripts:

Usage: glom [FLAGS] [spec [target]]

Command-line interface to the glom library, providing nested data access and data
restructuring with the power of Python.

Flags:

  --help / -h                     show this help message and exit
  --target-file TARGET_FILE       path to target data source (optional)
  --target-format TARGET_FORMAT   format of the source data (json or python) (defaults
                                  to 'json')
  --spec-file SPEC_FILE           path to glom spec definition (optional)
  --spec-format SPEC_FORMAT       format of the glom spec definition (json, python,
                                  python-full) (defaults to 'python')
  --indent INDENT                 number of spaces to indent the result, 0 to disable
                                  pretty-printing (defaults to 2)
  --debug                         interactively debug any errors that come up
  --inspect                       interactively explore the data

Anything you can do at the command line readily translates to Python code, so you've always got a path forward when complexity starts to ramp up.

Examples

Without glom

>>> data = {'a': {'b': {'c': 'd'}}}
>>> data['a']['b']['c']
'd'
>>> data2 = {'a': {'b': None}}
>>> data2['a']['b']['c']
Traceback (most recent call last):
...
TypeError: 'NoneType' object is not subscriptable

With glom

>>> glom(data, 'a.b.c')
'd'
>>> glom(data2, 'a.b.c')
Traceback (most recent call last):
...
PathAccessError: could not access 'c', index 2 in path Path('a', 'b', 'c'), got error: ...

Learn more

If all this seems interesting, continue exploring glom below:

All of the links above are overflowing with examples, but should you find anything about the docs, or glom itself, lacking, please submit an issue!

In the meantime, just remember: When you've got nested data, glom it! ☄️

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

glom-20.11.0.tar.gz (186.3 kB view details)

Uploaded Source

Built Distribution

glom-20.11.0-py2.py3-none-any.whl (98.0 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file glom-20.11.0.tar.gz.

File metadata

  • Download URL: glom-20.11.0.tar.gz
  • Upload date:
  • Size: 186.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.3.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.5.2

File hashes

Hashes for glom-20.11.0.tar.gz
Algorithm Hash digest
SHA256 54051072bccc9cdb3ebbd8af0559195137a61d308f04bff19678e4b61350eb12
MD5 6956aef03745b805b506c7a147b41aa4
BLAKE2b-256 420974f2f2553d0e441f24f1bb30b4a07e6e866e98537e40faf0d086861137cd

See more details on using hashes here.

File details

Details for the file glom-20.11.0-py2.py3-none-any.whl.

File metadata

  • Download URL: glom-20.11.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 98.0 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.3.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.5.2

File hashes

Hashes for glom-20.11.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 566f723ecac64d8bd93b3c33fbfd4d5ea7cb2842b5286a19f48c66240408b55f
MD5 ffc8899c0813fcd9c7db639ddaf16724
BLAKE2b-256 5ae2977d77f6e0c34902f05a0754beb5950ea70c3c3c935d571fccac9540b57a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page