Skip to main content

BigQuery Data Transfer API client library

Project description

alpha pypi versions compat_check_pypi compat_check_github

The BigQuery Data Transfer API allows users to transfer data from partner SaaS applications to Google BigQuery on a scheduled, managed basis.

Quick Start

In order to use this library, you first need to go through the following steps:

  1. Select or create a Cloud Platform project.

  2. Enable the BigQuery Data Transfer API.

  3. Setup Authentication.

Installation

Install this library in a virtualenv using pip. virtualenv is a tool to create isolated Python environments. The basic problem it addresses is one of dependencies and versions, and indirectly permissions.

With virtualenv, it’s possible to install this library without needing system install permissions, and without clashing with the installed system dependencies.

Supported Python Versions

Python >= 3.5

Deprecated Python Versions

Python == 2.7. Python 2.7 support will be removed on January 1, 2020.

Mac/Linux

pip install virtualenv
virtualenv <your-env>
source <your-env>/bin/activate
<your-env>/bin/pip install google-cloud-bigquery-datatransfer

Windows

pip install virtualenv
virtualenv <your-env>
<your-env>\Scripts\activate
<your-env>\Scripts\pip.exe install google-cloud-bigquery-datatransfer

Example Usage

DataTransferServiceClient

from google.cloud.bigquery import datatransfer_v1

client = datatransfer_v1.DataTransferServiceClient()

parent = client.location_path('[PROJECT]', '[LOCATION]')


# Iterate over all results
for element in client.list_data_sources(parent):
    # process element
    pass

# Or iterate over results one page at a time
for page in client.list_data_sources(parent).pages:
    for element in page:
        # process element
        pass

Next Steps

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

google_cloud_bigquery_datatransfer-0.4.1-py2.py3-none-any.whl (74.9 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file google-cloud-bigquery-datatransfer-0.4.1.tar.gz.

File metadata

  • Download URL: google-cloud-bigquery-datatransfer-0.4.1.tar.gz
  • Upload date:
  • Size: 68.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.6.0

File hashes

Hashes for google-cloud-bigquery-datatransfer-0.4.1.tar.gz
Algorithm Hash digest
SHA256 9ef431c0747d92dd5d5d4038aab96215dfd20c59235ece99a96d8329792cbcdb
MD5 b94f0efd80a1b5d788c863154c7fa0a0
BLAKE2b-256 0533927fee82233888bd5add12bd52542aebb78b2d34014c02399383fc560d18

See more details on using hashes here.

Provenance

File details

Details for the file google_cloud_bigquery_datatransfer-0.4.1-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for google_cloud_bigquery_datatransfer-0.4.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 984fb60fc28828b265d2ec10be04235984a9330614dd498421dd7c6e481e1dc7
MD5 38b178d63278d782893cc2d2ebd7d26f
BLAKE2b-256 e78b76c69bb2e6e031ec601cae83398960b192291d709731fe665f360f84eeac

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page