MLFlow Google Cloud Vertex AI integration package
Project description
MLFlow deployment plugin for Google Cloud Vertex AI
Installation
python3 -m pip install google_cloud_mlflow
Usage
Command-line
Create deployment
mlflow deployments create --target google_cloud --name "deployment name" --model-uri "models:/mymodel/mymodelversion" --config destination_image_uri="gcr.io/<repo>/<path>"
List deployments
mlflow deployments list --target google_cloud
Get deployment
mlflow deployments get --target google_cloud --name "deployment name"
Delete deployment
mlflow deployments delete --target google_cloud --name "deployment name"
Update deployment
mlflow deployments update --target google_cloud --name "deployment name" --model-uri "models:/mymodel/mymodelversion" --config destination_image_uri="gcr.io/<repo>/<path>"
Predict
mlflow deployments predict --target google_cloud --name "deployment name" --input-path "inputs.json" --output-path "outputs.json
Get help
mlflow deployments help --target google_cloud
Python
import mlflow
client = mlflow.get_deploy_client("google_cloud")
# Create deployment
model_uri = "models:/mymodel/mymodelversion"
deployment = client.create_deployment(
name="deployment name",
model_uri=model_uri,
# Config is optional
config=dict(
# Deployed model config
machine_type="n1-standard-2",
min_replica_count=None,
max_replica_count=None,
accelerator_type=None,
accelerator_count=None,
service_account=None,
explanation_metadata=None, # JSON string
explanation_parameters=None, # JSON string
# Model container image building config
destination_image_uri=None,
timeout=None,
# Model deployment config
sync="true",
# Endpoint config
description=None,
# Vertex AI config
project=None,
location=None,
experiment=None,
experiment_description=None,
staging_bucket=None,
# List deployments
deployments = client.list_deployments()
# Get deployment
deployments = client.get_deployment(name="deployment name")
# Delete deployment
deployment = client.delete_deployment(name="deployment name")
# Update deployment
deployment = client.create_deployment(
name="deployment name",
model_uri=model_uri,
# Config is optional
config=dict(...),
)
# Predict
import pandas
df = pandas.DataFrame([
{"a": 1,"b": 2,"c": 3},
{"a": 4,"b": 5,"c": 6}
])
predictions = client.predict("deployment name", df)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
google_cloud_mlflow-0.0.1.tar.gz
(10.9 kB
view details)
Built Distribution
File details
Details for the file google_cloud_mlflow-0.0.1.tar.gz
.
File metadata
- Download URL: google_cloud_mlflow-0.0.1.tar.gz
- Upload date:
- Size: 10.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.25.1 setuptools/46.1.1 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 60504590a9be12b8e4ff5f1237839c6a477c845186b69505ae0cbc61cdf45f6e |
|
MD5 | 3a802b926a275ca5a12ad50546adbc1e |
|
BLAKE2b-256 | 217d9e7977690289786b2442f7bcefa8420fa213916929ee564a21adaff90c5e |
Provenance
File details
Details for the file google_cloud_mlflow-0.0.1-py3-none-any.whl
.
File metadata
- Download URL: google_cloud_mlflow-0.0.1-py3-none-any.whl
- Upload date:
- Size: 15.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.25.1 setuptools/46.1.1 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | da295caa7bf840d9af7f7c437abc7d157038407ed033611570f25e69c19a5a23 |
|
MD5 | 57d6730bb5d7b4fdaf0fee9f40c75fc3 |
|
BLAKE2b-256 | 6b59f7ddb442394d25f4622dc854629878c5d59a7ea3dfd4e7ed8d4fafffaa2d |