Skip to main content

MLflow Google Cloud Vertex AI integration package

Project description

MLflow plugin for Google Cloud Vertex AI

Installation

python3 -m pip install google_cloud_mlflow

Deployment plugin usage

Command-line

Create deployment

mlflow deployments create --target google_cloud --name "deployment name" --model-uri "models:/mymodel/mymodelversion" --config destination_image_uri="gcr.io/<repo>/<path>"

List deployments

mlflow deployments list --target google_cloud

Get deployment

mlflow deployments get --target google_cloud --name "deployment name"

Delete deployment

mlflow deployments delete --target google_cloud --name "deployment name"

Update deployment

mlflow deployments update --target google_cloud --name "deployment name" --model-uri "models:/mymodel/mymodelversion" --config destination_image_uri="gcr.io/<repo>/<path>"

Predict

mlflow deployments predict --target google_cloud --name "deployment name" --input-path "inputs.json" --output-path "outputs.json

Get help

mlflow deployments help --target google_cloud

Python

import mlflow
client = mlflow.get_deploy_client("google_cloud")

# Create deployment
model_uri = "models:/mymodel/mymodelversion"
deployment = client.create_deployment(
    name="deployment name",
    model_uri=model_uri,
    # Config is optional
    config=dict(
        # Deployed model config
        machine_type="n1-standard-2",
        min_replica_count=None,
        max_replica_count=None,
        accelerator_type=None,
        accelerator_count=None,
        service_account=None,
        explanation_metadata=None, # JSON string
        explanation_parameters=None, # JSON string

        # Model container image building config
        destination_image_uri=None,
        timeout=None,

        # Model deployment config
        sync="true",

        # Endpoint config
        description=None,

        # Vertex AI config
        project=None,
        location=None,
        experiment=None,
        experiment_description=None,
        staging_bucket=None,

# List deployments
deployments = client.list_deployments()

# Get deployment
deployments = client.get_deployment(name="deployment name")

# Delete deployment
deployment = client.delete_deployment(name="deployment name")

# Update deployment
deployment = client.create_deployment(
    name="deployment name",
    model_uri=model_uri,
    # Config is optional
    config=dict(...),
)

# Predict
import pandas
df = pandas.DataFrame([
    {"a": 1,"b": 2,"c": 3},
    {"a": 4,"b": 5,"c": 6}
])
predictions = client.predict("deployment name", df)

Model Registry plugin usage

Set the MLflow Model Registry URI to a directory in some Google Cloud Storage bucket, then log models using mlflow.log_model as usual.

mlflow.set_registry_uri("gs://<bucket>/models/")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

google_cloud_mlflow-0.0.2rc1.tar.gz (20.9 kB view details)

Uploaded Source

Built Distribution

google_cloud_mlflow-0.0.2rc1-py3-none-any.whl (22.1 kB view details)

Uploaded Python 3

File details

Details for the file google_cloud_mlflow-0.0.2rc1.tar.gz.

File metadata

  • Download URL: google_cloud_mlflow-0.0.2rc1.tar.gz
  • Upload date:
  • Size: 20.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for google_cloud_mlflow-0.0.2rc1.tar.gz
Algorithm Hash digest
SHA256 505ed385e979d6d32e2a442ae63e43f9ff6ab07a668c69a4d9ec8c0485a9e0d1
MD5 7b0cee469a29c0faafc3099942681f01
BLAKE2b-256 357421dec9d7d8b7eb0ee5dc4686c50d65ed4e2eb8d756fa711bd4e5db489ad5

See more details on using hashes here.

Provenance

File details

Details for the file google_cloud_mlflow-0.0.2rc1-py3-none-any.whl.

File metadata

  • Download URL: google_cloud_mlflow-0.0.2rc1-py3-none-any.whl
  • Upload date:
  • Size: 22.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.6

File hashes

Hashes for google_cloud_mlflow-0.0.2rc1-py3-none-any.whl
Algorithm Hash digest
SHA256 94f035dd3846f0f1e92c06c95c83cd8b62d39180f3343b6af1a69b5bb9879c5d
MD5 187f9e3a7fd583ae934a70b021aa3d18
BLAKE2b-256 c73c0d3db8e26588709a107cf9ddf4272d2449788af137a655510929337d7ad3

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page