Skip to main content

MLflow Google Cloud Vertex AI integration package

Project description

MLflow plugin for Google Cloud Vertex AI

Installation

python3 -m pip install google_cloud_mlflow

Deployment plugin usage

Command-line

Create deployment

mlflow deployments create --target google_cloud --name "deployment name" --model-uri "models:/mymodel/mymodelversion" --config destination_image_uri="gcr.io/<repo>/<path>"

List deployments

mlflow deployments list --target google_cloud

Get deployment

mlflow deployments get --target google_cloud --name "deployment name"

Delete deployment

mlflow deployments delete --target google_cloud --name "deployment name"

Update deployment

mlflow deployments update --target google_cloud --name "deployment name" --model-uri "models:/mymodel/mymodelversion" --config destination_image_uri="gcr.io/<repo>/<path>"

Predict

mlflow deployments predict --target google_cloud --name "deployment name" --input-path "inputs.json" --output-path "outputs.json

Get help

mlflow deployments help --target google_cloud

Python

from mlflow import deployments
client = deployments.get_deploy_client("google_cloud")

# Create deployment
model_uri = "models:/mymodel/mymodelversion"
deployment = client.create_deployment(
    name="deployment name",
    model_uri=model_uri,
    # Config is optional
    config=dict(
        # Deployed model config
        machine_type="n1-standard-2",
        min_replica_count=None,
        max_replica_count=None,
        accelerator_type=None,
        accelerator_count=None,
        service_account=None,
        explanation_metadata=None, # JSON string
        explanation_parameters=None, # JSON string

        # Model container image building config
        destination_image_uri=None,
        timeout=None,

        # Model deployment config
        sync="true",

        # Endpoint config
        description=None,

        # Vertex AI config
        project=None,
        location=None,
        experiment=None,
        experiment_description=None,
        staging_bucket=None,

# List deployments
deployments = client.list_deployments()

# Get deployment
deployments = client.get_deployment(name="deployment name")

# Delete deployment
deployment = client.delete_deployment(name="deployment name")

# Update deployment
deployment = client.create_deployment(
    name="deployment name",
    model_uri=model_uri,
    # Config is optional
    config=dict(...),
)

# Predict
import pandas
df = pandas.DataFrame([
    {"a": 1,"b": 2,"c": 3},
    {"a": 4,"b": 5,"c": 6}
])
predictions = client.predict("deployment name", df)

Model Registry plugin usage

Set the MLflow Model Registry URI to a directory in some Google Cloud Storage bucket, then log models using mlflow.log_model as usual.

mlflow.set_registry_uri("gs://<bucket>/models/")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

google_cloud_mlflow-0.0.4.dev3.tar.gz (22.7 kB view details)

Uploaded Source

Built Distribution

google_cloud_mlflow-0.0.4.dev3-py3-none-any.whl (24.5 kB view details)

Uploaded Python 3

File details

Details for the file google_cloud_mlflow-0.0.4.dev3.tar.gz.

File metadata

  • Download URL: google_cloud_mlflow-0.0.4.dev3.tar.gz
  • Upload date:
  • Size: 22.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.2

File hashes

Hashes for google_cloud_mlflow-0.0.4.dev3.tar.gz
Algorithm Hash digest
SHA256 f6f18832a4dae1dad699c8c54940866363fde510fcbe0ef8560fd8148d23e71a
MD5 99024aeba580eee7b92340b9c23ead78
BLAKE2b-256 590ad91045c54354e9540e922f9a59dedfddd7d2e60ed486c726cad48d6f6cea

See more details on using hashes here.

Provenance

File details

Details for the file google_cloud_mlflow-0.0.4.dev3-py3-none-any.whl.

File metadata

  • Download URL: google_cloud_mlflow-0.0.4.dev3-py3-none-any.whl
  • Upload date:
  • Size: 24.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.2

File hashes

Hashes for google_cloud_mlflow-0.0.4.dev3-py3-none-any.whl
Algorithm Hash digest
SHA256 40a9b4120bb8a0c1ad8ffea2979203a1d57b586e20a78ce039e0032e5a9a91a9
MD5 d3905917790145189364076590545fa7
BLAKE2b-256 2455c683fbb866ac206e5d0d6b3d8a8c7aa0f56d2fb6c68460403b72155d5d57

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page