Skip to main content

MLflow Google Cloud Vertex AI integration package

Project description

MLflow plugin for Google Cloud Vertex AI

Note: The plugin is experimental and may be changed or removed in the future.

Installation

python3 -m pip install google_cloud_mlflow

Deployment plugin usage

Command-line

Create deployment

mlflow deployments create --target google_cloud --name "deployment name" --model-uri "models:/mymodel/mymodelversion" --config destination_image_uri="gcr.io/<repo>/<path>"

List deployments

mlflow deployments list --target google_cloud

Get deployment

mlflow deployments get --target google_cloud --name "deployment name"

Delete deployment

mlflow deployments delete --target google_cloud --name "deployment name"

Update deployment

mlflow deployments update --target google_cloud --name "deployment name" --model-uri "models:/mymodel/mymodelversion" --config destination_image_uri="gcr.io/<repo>/<path>"

Predict

mlflow deployments predict --target google_cloud --name "deployment name" --input-path "inputs.json" --output-path "outputs.json

Get help

mlflow deployments help --target google_cloud

Python

from mlflow import deployments
client = deployments.get_deploy_client("google_cloud")

# Create deployment
model_uri = "models:/mymodel/mymodelversion"
deployment = client.create_deployment(
    name="deployment name",
    model_uri=model_uri,
    # Config is optional
    config=dict(
        # Deployed model config
        machine_type="n1-standard-2",
        min_replica_count=None,
        max_replica_count=None,
        accelerator_type=None,
        accelerator_count=None,
        service_account=None,
        explanation_metadata=None, # JSON string
        explanation_parameters=None, # JSON string

        # Model container image building config
        destination_image_uri=None,
        timeout=None,

        # Model deployment config
        sync="true",

        # Endpoint config
        description=None,

        # Vertex AI config
        project=None,
        location=None,
        experiment=None,
        experiment_description=None,
        staging_bucket=None,

# List deployments
deployments = client.list_deployments()

# Get deployment
deployments = client.get_deployment(name="deployment name")

# Delete deployment
deployment = client.delete_deployment(name="deployment name")

# Update deployment
deployment = client.create_deployment(
    name="deployment name",
    model_uri=model_uri,
    # Config is optional
    config=dict(...),
)

# Predict
import pandas
df = pandas.DataFrame([
    {"a": 1,"b": 2,"c": 3},
    {"a": 4,"b": 5,"c": 6}
])
predictions = client.predict("deployment name", df)

Model Registry plugin usage

Set the MLflow Model Registry URI to a directory in some Google Cloud Storage bucket, then log models using mlflow.log_model as usual.

mlflow.set_registry_uri("gs://<bucket>/models/")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

google_cloud_mlflow-0.0.5rc1.tar.gz (22.0 kB view details)

Uploaded Source

Built Distribution

google_cloud_mlflow-0.0.5rc1-py3-none-any.whl (24.5 kB view details)

Uploaded Python 3

File details

Details for the file google_cloud_mlflow-0.0.5rc1.tar.gz.

File metadata

  • Download URL: google_cloud_mlflow-0.0.5rc1.tar.gz
  • Upload date:
  • Size: 22.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.9

File hashes

Hashes for google_cloud_mlflow-0.0.5rc1.tar.gz
Algorithm Hash digest
SHA256 62a04b72c46c63836ddee651abfdc3c4b5bd828aca8997b0ec1917df10b6423a
MD5 c94c62f1ece57bb0a432c03bd4eb68b8
BLAKE2b-256 a00b45613d7522b8257b442741b60bac2234bdfdc973503ba754f8b92a17e03f

See more details on using hashes here.

Provenance

File details

Details for the file google_cloud_mlflow-0.0.5rc1-py3-none-any.whl.

File metadata

  • Download URL: google_cloud_mlflow-0.0.5rc1-py3-none-any.whl
  • Upload date:
  • Size: 24.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.9

File hashes

Hashes for google_cloud_mlflow-0.0.5rc1-py3-none-any.whl
Algorithm Hash digest
SHA256 9230b300b449de8c6087f8344967feb06cd631a94e030f86e5929abfcdcc593d
MD5 45c3988e2a8900ca8ab7e645b34e91e4
BLAKE2b-256 a166a6113719067432701877e518d4f20f6b0907cebba1520bf6d6d97e5d3c7a

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page