MLflow Google Cloud Vertex AI integration package
Project description
MLflow plugin for Google Cloud Vertex AI
Note: The plugin is experimental and may be changed or removed in the future.
Installation
python3 -m pip install google_cloud_mlflow
Deployment plugin usage
Command-line
Create deployment
mlflow deployments create --target google_cloud --name "deployment name" --model-uri "models:/mymodel/mymodelversion" --config destination_image_uri="gcr.io/<repo>/<path>"
List deployments
mlflow deployments list --target google_cloud
Get deployment
mlflow deployments get --target google_cloud --name "deployment name"
Delete deployment
mlflow deployments delete --target google_cloud --name "deployment name"
Update deployment
mlflow deployments update --target google_cloud --name "deployment name" --model-uri "models:/mymodel/mymodelversion" --config destination_image_uri="gcr.io/<repo>/<path>"
Predict
mlflow deployments predict --target google_cloud --name "deployment name" --input-path "inputs.json" --output-path "outputs.json
Get help
mlflow deployments help --target google_cloud
Python
from mlflow import deployments
client = deployments.get_deploy_client("google_cloud")
# Create deployment
model_uri = "models:/mymodel/mymodelversion"
deployment = client.create_deployment(
name="deployment name",
model_uri=model_uri,
# Config is optional
config=dict(
# Deployed model config
machine_type="n1-standard-2",
min_replica_count=None,
max_replica_count=None,
accelerator_type=None,
accelerator_count=None,
service_account=None,
explanation_metadata=None, # JSON string
explanation_parameters=None, # JSON string
# Model container image building config
destination_image_uri=None,
timeout=None,
# Model deployment config
sync="true",
# Endpoint config
description=None,
# Vertex AI config
project=None,
location=None,
experiment=None,
experiment_description=None,
staging_bucket=None,
# List deployments
deployments = client.list_deployments()
# Get deployment
deployments = client.get_deployment(name="deployment name")
# Delete deployment
deployment = client.delete_deployment(name="deployment name")
# Update deployment
deployment = client.create_deployment(
name="deployment name",
model_uri=model_uri,
# Config is optional
config=dict(...),
)
# Predict
import pandas
df = pandas.DataFrame([
{"a": 1,"b": 2,"c": 3},
{"a": 4,"b": 5,"c": 6}
])
predictions = client.predict("deployment name", df)
Model Registry plugin usage
Set the MLflow Model Registry URI to a directory in some Google Cloud Storage bucket, then log models using mlflow.log_model
as usual.
mlflow.set_registry_uri("gs://<bucket>/models/")
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Close
Hashes for google_cloud_mlflow-0.0.5rc3.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | a58c8ffb605f2a896efbfdf45089b0982677b4dbad3798c23e606ad9c1120ec9 |
|
MD5 | 7f659e697be694cd50a43adfaa0ef96f |
|
BLAKE2b-256 | 6ee13d1fe05ebd259f552517eda64e5f16fe9f4b15db60872cad2411dd3d37a7 |
Close
Hashes for google_cloud_mlflow-0.0.5rc3-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | f915e66cd359091f5b0899d1df90cf553b019d03e0fe038bc075f8c645f3e497 |
|
MD5 | f238229ef97606ded85eed04132534a8 |
|
BLAKE2b-256 | c3e6fcf9dc4fa0b5ab3e474e18ff98fd3663cae9f81df6a3592aacfd046406f1 |