Skip to main content

MLflow Google Cloud Vertex AI integration package

Project description

MLflow plugin for Google Cloud Vertex AI

Note: The plugin is experimental and may be changed or removed in the future.

Installation

python3 -m pip install google_cloud_mlflow

Deployment plugin usage

Command-line

Create deployment

mlflow deployments create --target google_cloud --name "deployment name" --model-uri "models:/mymodel/mymodelversion" --config destination_image_uri="gcr.io/<repo>/<path>"

List deployments

mlflow deployments list --target google_cloud

Get deployment

mlflow deployments get --target google_cloud --name "deployment name"

Delete deployment

mlflow deployments delete --target google_cloud --name "deployment name"

Update deployment

mlflow deployments update --target google_cloud --name "deployment name" --model-uri "models:/mymodel/mymodelversion" --config destination_image_uri="gcr.io/<repo>/<path>"

Predict

mlflow deployments predict --target google_cloud --name "deployment name" --input-path "inputs.json" --output-path "outputs.json

Get help

mlflow deployments help --target google_cloud

Python

from mlflow import deployments
client = deployments.get_deploy_client("google_cloud")

# Create deployment
model_uri = "models:/mymodel/mymodelversion"
deployment = client.create_deployment(
    name="deployment name",
    model_uri=model_uri,
    # Config is optional
    config=dict(
        # Deployed model config
        machine_type="n1-standard-2",
        min_replica_count=None,
        max_replica_count=None,
        accelerator_type=None,
        accelerator_count=None,
        service_account=None,
        explanation_metadata=None, # JSON string
        explanation_parameters=None, # JSON string

        # Model container image building config
        destination_image_uri=None,
        timeout=None,

        # Model deployment config
        sync="true",

        # Endpoint config
        description=None,

        # Vertex AI config
        project=None,
        location=None,
        experiment=None,
        experiment_description=None,
        staging_bucket=None,

# List deployments
deployments = client.list_deployments()

# Get deployment
deployments = client.get_deployment(name="deployment name")

# Delete deployment
deployment = client.delete_deployment(name="deployment name")

# Update deployment
deployment = client.create_deployment(
    name="deployment name",
    model_uri=model_uri,
    # Config is optional
    config=dict(...),
)

# Predict
import pandas
df = pandas.DataFrame([
    {"a": 1,"b": 2,"c": 3},
    {"a": 4,"b": 5,"c": 6}
])
predictions = client.predict("deployment name", df)

Model Registry plugin usage

Set the MLflow Model Registry URI to a directory in some Google Cloud Storage bucket, then log models using mlflow.log_model as usual.

mlflow.set_registry_uri("gs://<bucket>/models/")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

google_cloud_mlflow-0.0.5rc5.tar.gz (22.4 kB view details)

Uploaded Source

Built Distribution

google_cloud_mlflow-0.0.5rc5-py3-none-any.whl (24.9 kB view details)

Uploaded Python 3

File details

Details for the file google_cloud_mlflow-0.0.5rc5.tar.gz.

File metadata

  • Download URL: google_cloud_mlflow-0.0.5rc5.tar.gz
  • Upload date:
  • Size: 22.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.9

File hashes

Hashes for google_cloud_mlflow-0.0.5rc5.tar.gz
Algorithm Hash digest
SHA256 53603b9d2b306bb865df6fe4484fbe0ca98be039115ca3a24eb097f2ee8aab2f
MD5 d9027707c3cdd3888c8f109298aabab1
BLAKE2b-256 3085a2dcf14157d6f9bb79150df1df49f76727775081b523e20059b53f116d54

See more details on using hashes here.

Provenance

File details

Details for the file google_cloud_mlflow-0.0.5rc5-py3-none-any.whl.

File metadata

  • Download URL: google_cloud_mlflow-0.0.5rc5-py3-none-any.whl
  • Upload date:
  • Size: 24.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.9

File hashes

Hashes for google_cloud_mlflow-0.0.5rc5-py3-none-any.whl
Algorithm Hash digest
SHA256 9c3db22f7010ef60e1f7f01f18330e1c3578643f9d57f9939790b497fbc08dd1
MD5 a7f8b42afec8849833bf1aaab5c6d3aa
BLAKE2b-256 7a29ff9214d014a4bac2d800f50ed5beb8546ca97dd5d44b95516f540535490a

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page