Skip to main content

A command line client for the Global Pathogen Analysis Service

Project description

Tests PyPI version

A standalone command line and Python API client for interacting with the Global Pathogen Analysis Service. Supports Linux, MacOS, and soon Windows. The client uses parallelisation and asynchronous requests to improve performance, and automates client-side sample name linkage. Requires Python 3.10+.

Download CLI demo

Command line interface Python API
gpas upload lib.Batch(upload_csv, token).upload()
gpas download lib.download_async()
gpas validate validation.validate()
gpas status lib.fetch_status(), lib.fetch_status_async()

Install

With conda

curl https://raw.githubusercontent.com/GlobalPathogenAnalysisService/gpas-cli/main/environment.yml --output environment.yml
conda env create -f environment.yml
conda activate gpas-cli

With pip

Requires separate installation of Samtools and read-it-and-keep

pip install gpas

# If samtools and read-it-and-keep are not in $PATH, tell gpas-cli where to find them:
export GPAS_SAMTOOLS_PATH=path/to/samtools
export GPAS_READITANDKEEP_PATH=path/to/readItAndKeep

Authentication

Most gpas-cli actions require a valid API token (token.json). This can be saved using the 'Get API token' button on the 'Upload Client' page of the GPAS portal. If you can't see this button, please ask the team to enable it for you. If you'd like to try GPAS, please get in touch!

Command line usage

gpas validate

Validates an upload_csv and checks that the fastq or bam files it references exist.

gpas validate large-nanopore-fastq.csv

# Validate supplied tags
gpas validate --environment dev --token token.json large-nanopore-fastq.csv
% gpas validate -h
usage: gpas validate [-h] [--token TOKEN] [--environment {dev,staging,prod}] [--json-messages] upload_csv

Validate an upload CSV. Validates tags remotely if supplied with an authentication token

positional arguments:
  upload_csv            Path of upload CSV

options:
  -h, --help            show this help message and exit
  --token TOKEN         Path of auth token available from GPAS Portal
                        (default: None)
  --environment {dev,staging,prod}
                        GPAS environment to use
                        (default: prod)
  --json-messages       Emit JSON to stdout
                        (default: False)

gpas upload

Validates, decontaminates and upload reads specified in upload_csv to the specified GPAS environment

Upload CLI demo

gpas upload --environment dev --token token.json large-illumina-bam.csv

# Dry run; skip submission
gpas upload --dry-run --environment dev --token token.json large-illumina-bam.csv

# Offline mode; quit after decontamination
gpas upload tests/test-data/large-nanopore-fastq.csv
% gpas upload -h
usage: gpas upload [-h] [--token TOKEN] [--working-dir WORKING_DIR] [--out-dir OUT_DIR] [--processes PROCESSES] [--dry-run]
                   [--debug] [--environment {dev,staging,prod}] [--json-messages]
                   upload_csv

Validate, decontaminate and upload reads to the GPAS platform

positional arguments:
  upload_csv            Path of upload csv

options:
  -h, --help            show this help message and exit
  --token TOKEN         Path of auth token available from GPAS Portal
                        (default: None)
  --working-dir WORKING_DIR
                        Path of directory in which to make intermediate files
                        (default: /tmp)
  --out-dir OUT_DIR     Path of directory in which to save mapping CSV
                        (default: .)
  --processes PROCESSES
                        Number of tasks to execute in parallel. 0 = auto
                        (default: 0)
  --dry-run             Exit before submitting files
                        (default: False)
  --debug               Emit verbose debug messages
                        (default: False)
  --environment {dev,staging,prod}
                        GPAS environment to use
                        (default: prod)
  --json-messages       Emit JSON to stdout
                        (default: False)

gpas download

Downloads json, fasta, vcf and bam outputs from the GPAS platform by passing either a mapping_csv generated during batch upload, or a comma-separated list of sample guids. By passing both --mapping-csv and --rename, output files are saved using local sample names without the platform's knowledge.

Download CLI demo

# Download and rename BAMs for a previous upload
gpas download --rename --mapping-csv example_mapping.csv --file-types bam token.json

# Download all outputs for a single guid
gpas download --guids 6e024eb1-432c-4b1b-8f57-3911fe87555f --file-types json,vcf,bam,fasta token.json
% gpas download -h
usage: gpas download [-h] [--mapping-csv MAPPING_CSV] [--guids GUIDS] [--file-types FILE_TYPES] [--out-dir OUT_DIR] [--rename]
                     [--debug] [--environment {dev,staging,prod}]
                     token

Download analytical outputs from the GPAS platform for given a mapping csv or list of guids

positional arguments:
  token                 Path of auth token (available from GPAS Portal)

options:
  -h, --help            show this help message and exit
  --mapping-csv MAPPING_CSV
                        Path of mapping CSV generated at upload time
                        (default: None)
  --guids GUIDS         Comma-separated list of GPAS sample guids
                        (default: )
  --file-types FILE_TYPES
                        Comma separated list of outputs to download (json,fasta,bam,vcf)
                        (default: fasta)
  --out-dir OUT_DIR     Path of output directory
                        (default: /Users/bede/Research/Git/gpas-cli)
  --rename              Rename outputs using local sample names (requires --mapping-csv)
                        (default: False)
  --debug               Emit verbose debug messages
                        (default: False)
  --environment {dev,staging,prod}
                        GPAS environment to use
                        (default: prod)

gpas status

Check the processing status of an uploaded batch by passing either a mapping_csv generated at upload time, or a comma-separated list of sample guids.

gpas status --mapping-csv example_mapping.csv --environment dev token.json
gpas status --guids 6e024eb1-432c-4b1b-8f57-3911fe87555f --format json token.json
% gpas status -h
usage: gpas status [-h] [--mapping-csv MAPPING_CSV] [--guids GUIDS] [--format {table,csv,json}] [--rename] [--raw]
                   [--environment {dev,staging,prod}]
                   token

Check the status of samples submitted to the GPAS platform

positional arguments:
  token                 Path of auth token available from GPAS Portal

options:
  -h, --help            show this help message and exit
  --mapping-csv MAPPING_CSV
                        Path of mapping CSV generated at upload time
                        (default: None)
  --guids GUIDS         Comma-separated list of GPAS sample guids
                        (default: )
  --format {table,csv,json}
                        Output format
                        (default: table)
  --rename              Use local sample names (requires --mapping-csv)
                        (default: False)
  --raw                 Emit raw response
                        (default: False)
  --environment {dev,staging,prod}
                        GPAS environment to use
                        (default: prod)

Development and testing

Use pre-commit to apply black style at commit time (should happen automatically)

git clone https://github.com/GlobalPathogenAnalysisService/gpas-cli
conda env create -f environment-dev.yml
conda activate gpas-cli-dev
cd gpas-cli
pip install --upgrade --force-reinstall --editable ./

# Offline unit tests
pytest tests/test_gpas.py

# Online and upload tests require a valid token insides tests/test-data
pytest --cov=gpas

Binary distribution

The functionality of gpas upload is also distributed as a binary packaged with PyInstaller. This is a portable, standalone executable. These binaries can be downloaded from the 'Artifacts' section of each workflow run listed here: https://github.com/GlobalPathogenAnalysisService/gpas-cli/actions/workflows/distribute.yml

Usage

cli-upload --environment dev --token token.json large-nanopore-bam.csv --json-messages --processes 1

If you encounter exceptions related to running samtools and readItAndKeep, set the environment variables GPAS_READITANDKEEP_PATH and GPAS_SAMTOOLS_PATH to the respective binary paths. Note that unlike the Python distribution, the PyInstaller binary currently only supports serial decontamination and bam conversion (--processes 1).

Creation

conda env create -f environment-dev.yml
conda activate gpas-cli-dev
pyinstaller --onefile --name cli-upload --add-data src/gpas/data:data --noconfirm src/gpas/cli-upload.py

Authors: Bede Constantinides and Philip Fowler

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gpas-0.2.0.tar.gz (68.2 kB view details)

Uploaded Source

Built Distribution

gpas-0.2.0-py3-none-any.whl (66.9 kB view details)

Uploaded Python 3

File details

Details for the file gpas-0.2.0.tar.gz.

File metadata

  • Download URL: gpas-0.2.0.tar.gz
  • Upload date:
  • Size: 68.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 pkginfo/1.8.2 readme-renderer/27.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.4.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for gpas-0.2.0.tar.gz
Algorithm Hash digest
SHA256 e8b5e41c504f12d7ec0ef965cef67551cff7f632c3eb8e7e88ed63cc8f342c4f
MD5 1e2d0644e8a99f2aef0266bfa37c86f3
BLAKE2b-256 47c4424270e2f07a66b3142223b4234f29a30468fa67ab434869eca56008d473

See more details on using hashes here.

File details

Details for the file gpas-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: gpas-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 66.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 pkginfo/1.8.2 readme-renderer/27.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.4.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for gpas-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 ff01af074091f6b11ab2f1487632bad5f97bcc5382dd08b2e3c52d94d2ff950a
MD5 577ffe452e1de36d660b5326ed571522
BLAKE2b-256 05b359d9076295fedf89fdcfa5e780708b566843f712f4b2cdb71927d3d96fde

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page