Skip to main content

A command line client for the Global Pathogen Analysis Service

Project description

Tests PyPI version

The command line client for interacting with the Global Pathogen Analysis Service. Performs fast parallel client-side decontamination and upload, and automatically renames downloaded output files with original sample identifiers for convenience while preserving privacy. Installs with Conda or Docker and supports Ubuntu Linux, MacOS and Windows.

Upload CLI demo

Command line interface Python API (unstable)
gpas upload lib.Batch().upload()
gpas download lib.download_async()
gpas validate validation.validate()
gpas status lib.fetch_status_async()

Install

With conda

Miniconda is recommended (Miniconda installation guide). If using a recent Mac with ARM architecture, you'll need to install Miniconda and gpas-cli inside a Rosetta Terminal.

# Create and activate the conda environment
curl -OJ https://raw.githubusercontent.com/GlobalPathogenAnalysisService/gpas-cli/main/environment.yml
conda env create -f environment.yml
conda activate gpas-cli

# Show gpas-cli version
gpas --version

# Updating? Run this before creating the conda environment
conda remove -n gpas-cli --all

With docker

gpas-cli releases are pushed to Docker Hub for easy installation on most platforms and architectures.

# Fetch image, show gpas-cli version
docker run oxfordmmm/gpas-cli:latest gpas --version

# Fetch image, upload example data using a bound volume
docker run \
-v /Users/bede/Research/Git/gpas-cli/tests/test-data:/test-data \
oxfordmmm/gpas-cli:latest \
gpas upload \
--environment dev \
--token /test-data/token.json \
--out-dir /test-data/output \
/test-data/large-nanopore-bam.csv

# Build image from scratch, show gpas-cli version
curl -OJ https://raw.githubusercontent.com/GlobalPathogenAnalysisService/gpas-cli/main/Dockerfile
docker run --rm $(docker build -q .) gpas --version

# Build image from scratch, upload example data
docker run \
-v /Users/bede/Research/Git/gpas-cli/tests/test-data:/test-data \
$(docker build -q .) \
gpas upload \
--environment dev \
--token /test-data/token.json \
--out-dir /test-data/output \
/test-data/large-nanopore-bam.csv

With pip

One can alternatively pip install the PyPI package in a Python 3.10+ environment, and manually install samtools and readItAndKeep binary dependencies.

# Install inside a new Python environment
python3 -m venv gpas-cli
source gpas-cli/bin/activate
pip install gpas

# Activate and use
source gpas-cli/bin/activate
gpas --version

# If samtools and read-it-and-keep are not in $PATH, tell gpas-cli where to find them
export GPAS_SAMTOOLS_PATH=path/to/samtools
export GPAS_READITANDKEEP_PATH=path/to/readItAndKeep

With PyInstaller

Static Linux, MacOS and Windows executables are generated for each release. These are intended for distribution with the GUI client but may also be used independently. These can be downloaded from the 'Artifacts' section of each workflow run listed here: https://github.com/GlobalPathogenAnalysisService/gpas-cli/actions/workflows/distribute.yml

Authentication

Most gpas-cli actions require a valid API token (token.json). This can be saved using the 'Get API token' button on the 'Upload Client' page of the GPAS portal. If you can't see this button, please ask the GPAS team to enable it for you. And if you'd like to try GPAS, please get in touch!

Command line usage

gpas validate

Validates an upload_csv and checks that the fastq or bam files it references exist.

gpas validate large-nanopore-fastq.csv

# Validate supplied tags
gpas validate --environment dev --token token.json large-nanopore-fastq.csv
% gpas validate -h
usage: gpas validate [-h] [--token TOKEN] [--environment {dev,staging,prod}] [--json-messages] upload_csv

Validate an upload CSV. Validates tags remotely if supplied with an authentication token

positional arguments:
  upload_csv            Path of upload CSV

options:
  -h, --help            show this help message and exit
  --token TOKEN         Path of auth token available from GPAS Portal
                        (default: None)
  --environment {dev,staging,prod}
                        GPAS environment to use
                        (default: prod)
  --json-messages       Emit JSON to stdout
                        (default: False)

gpas upload

Validates, decontaminates and upload reads specified in upload_csv to the specified GPAS environment

Upload CLI demo

gpas upload --environment dev --token token.json large-illumina-bam.csv

# Dry run; skip submission
gpas upload --dry-run --environment dev --token token.json large-illumina-bam.csv

# Offline mode; quit after decontamination
gpas upload tests/test-data/large-nanopore-fastq.csv
% gpas upload -h
usage: gpas upload [-h] [--token TOKEN] [--working-dir WORKING_DIR] [--out-dir OUT_DIR] [--processes PROCESSES] [--dry-run]
                   [--debug] [--environment {dev,staging,prod}] [--json-messages]
                   upload_csv

Validate, decontaminate and upload reads to the GPAS platform

positional arguments:
  upload_csv            Path of upload csv

options:
  -h, --help            show this help message and exit
  --token TOKEN         Path of auth token available from GPAS Portal
                        (default: None)
  --working-dir WORKING_DIR
                        Path of directory in which to make intermediate files
                        (default: /tmp)
  --out-dir OUT_DIR     Path of directory in which to save mapping CSV
                        (default: .)
  --processes PROCESSES
                        Number of tasks to execute in parallel. 0 = auto
                        (default: 0)
  --dry-run             Exit before submitting files
                        (default: False)
  --debug               Emit verbose debug messages
                        (default: False)
  --environment {dev,staging,prod}
                        GPAS environment to use
                        (default: prod)
  --json-messages       Emit JSON to stdout
                        (default: False)

gpas download

Downloads json, fasta, vcf and bam outputs from the GPAS platform by passing either a mapping_csv generated during batch upload, or a comma-separated list of sample guids. By passing both --mapping-csv and --rename, output files are saved using local sample names without the platform's knowledge.

Download CLI demo

# Download and rename BAMs for a previous upload
gpas download --rename --mapping-csv C-a06cbab8.mapping.csv --file-types bam token.json

# Download all outputs for a single guid
gpas download --guids 6e024eb1-432c-4b1b-8f57-3911fe87555f --file-types json,vcf,bam,fasta token.json
% gpas download -h
usage: gpas download [-h] [--mapping-csv MAPPING_CSV] [--guids GUIDS] [--file-types FILE_TYPES] [--out-dir OUT_DIR] [--rename]
                     [--debug] [--environment {dev,staging,prod}]
                     token

Download analytical outputs from the GPAS platform for given a mapping csv or list of guids

positional arguments:
  token                 Path of auth token (available from GPAS Portal)

options:
  -h, --help            show this help message and exit
  --mapping-csv MAPPING_CSV
                        Path of mapping CSV generated at upload time
                        (default: None)
  --guids GUIDS         Comma-separated list of GPAS sample guids
                        (default: )
  --file-types FILE_TYPES
                        Comma separated list of outputs to download (json,fasta,bam,vcf)
                        (default: fasta)
  --out-dir OUT_DIR     Path of output directory
                        (default: /Users/bede/Research/Git/gpas-cli)
  --rename              Rename outputs using local sample names (requires --mapping-csv)
                        (default: False)
  --debug               Emit verbose debug messages
                        (default: False)
  --environment {dev,staging,prod}
                        GPAS environment to use
                        (default: prod)

gpas status

Check the processing status of an uploaded batch by passing either a mapping_csv generated at upload time, or a comma-separated list of sample guids.

gpas status --mapping-csv example_mapping.csv --environment dev token.json
gpas status --guids 6e024eb1-432c-4b1b-8f57-3911fe87555f --format json token.json
% gpas status -h
usage: gpas status [-h] [--mapping-csv MAPPING_CSV] [--guids GUIDS] [--format {table,csv,json}] [--rename] [--raw]
                   [--environment {dev,staging,prod}]
                   token

Check the status of samples submitted to the GPAS platform

positional arguments:
  token                 Path of auth token available from GPAS Portal

options:
  -h, --help            show this help message and exit
  --mapping-csv MAPPING_CSV
                        Path of mapping CSV generated at upload time
                        (default: None)
  --guids GUIDS         Comma-separated list of GPAS sample guids
                        (default: )
  --format {table,csv,json}
                        Output format
                        (default: table)
  --rename              Use local sample names (requires --mapping-csv)
                        (default: False)
  --raw                 Emit raw response
                        (default: False)
  --environment {dev,staging,prod}
                        GPAS environment to use
                        (default: prod)

Development and testing

Use pre-commit to apply black style at commit time (should happen automatically)

git clone https://github.com/GlobalPathogenAnalysisService/gpas-cli
cd gpas-cli
conda env create -f environment-dev.yml
conda activate gpas-cli-dev
pip install --upgrade --force-reinstall --editable ./

# Offline unit tests
pytest tests/test_gpas.py

# The full test suite requires a valid token for dev inside tests/test-data
pytest --cov=gpas

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gpas-0.8.2.tar.gz (73.0 kB view details)

Uploaded Source

Built Distribution

gpas-0.8.2-py3-none-any.whl (70.7 kB view details)

Uploaded Python 3

File details

Details for the file gpas-0.8.2.tar.gz.

File metadata

  • Download URL: gpas-0.8.2.tar.gz
  • Upload date:
  • Size: 73.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.0

File hashes

Hashes for gpas-0.8.2.tar.gz
Algorithm Hash digest
SHA256 b5bb9435c7cc826319032e3535b4dbddee4b9c6e00b6654c2711d7db93dde586
MD5 f783e680d54d9d1d8a66d0ec7eef7074
BLAKE2b-256 75a5b3698cf32e34101462b52ac841bfe130df7e115a19ad41030bb9abfa7928

See more details on using hashes here.

File details

Details for the file gpas-0.8.2-py3-none-any.whl.

File metadata

  • Download URL: gpas-0.8.2-py3-none-any.whl
  • Upload date:
  • Size: 70.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.0

File hashes

Hashes for gpas-0.8.2-py3-none-any.whl
Algorithm Hash digest
SHA256 bf23c57b9c70d53433888c5d9cdbc6bf4878573e0164b7562b856eda87c10b5b
MD5 b273d1456a3d7f6d5c8865915004b023
BLAKE2b-256 ec15dd171e08cc51c5a0e6f5bc091cf9a9ad967fb969d58ed2214bcc46ae6653

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page