MNIST related models in Keras
Project description
Models
######
mnist-acgan
###########
*Auxiliary Classifier Generative Adversarial Network (ACGAN) for MNIST in
Keras*
Operations
==========
train
^^^^^
*Train the ACGAN*
Flags
-----
**batch-size**
*Training batch size (default is 100)*
**beta-1**
*Beta 1 (default is 0.5)*
**epochs**
*Number of epochs to train (default is 100)*
**learning-rate**
*Learning rate (default is 0.0002)*
References
==========
- https://github.com/keras-team/keras/blob/master/examples/mnist_acgan.py
- https://arxiv.org/abs/1511.06434
mnist-cnn
#########
*Convolutional neural network (CNN) classifier for MNIST in Keras*
Operations
==========
train
^^^^^
*Train the CNN*
Flags
-----
**batch-size**
*Training batch size (default is 128)*
**epochs**
*Number of epochs to train (default is 12)*
References
==========
- https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py
mnist-denoising-autoencoder
###########################
*Denoising autoencoder for MNIST in Keras*
Operations
==========
train
^^^^^
*Train the autoencoder*
Flags
-----
**batch-size**
*Training batch size (default is 128)*
**epochs**
*Number of epochs to train (default is 30)*
References
==========
- https://github.com/keras-team/keras/blob/master/examples/mnist_denoising_autoencoder.py
mnist-hierarchical-rnn
######################
*Hierarchical RNN (HRNN) classifier for MNIST in Keras*
Operations
==========
train
^^^^^
*Train the HRNN*
Flags
-----
**batch-size**
*Training batch size (default is 32)*
**epochs**
*Number of epochs to train (default is 5)*
References
==========
- https://github.com/keras-team/keras/blob/master/examples/mnist_hierarchical_rnn.py
- https://arxiv.org/abs/1506.01057
- http://ieeexplore.ieee.org/document/7298714/
mnist-irnn
##########
*Implementation of 'A Simple Way to Initialize Recurrent Networks of Rectified
Linear Units' with MNIST in Keras*
Operations
==========
train
^^^^^
*Train the RNN*
Flags
-----
**batch-size**
*Training batch size (default is 32)*
**epochs**
*Number of epochs to train (default is 200)*
**learning-rate**
*Learning rate (default is 1e-06)*
References
==========
- https://github.com/keras-team/keras/blob/master/examples/mnist_irnn.py
- http://arxiv.org/pdf/1504.00941v2.pdf
mnist-mlp
#########
*Multilayer perceptron (MLP) classifier for MNIST in Keras*
Operations
==========
train
^^^^^
*Train the MLP*
Flags
-----
**batch-size**
*Training batch size (default is 128)*
**epochs**
*Number of epochs to train (default is 20)*
References
==========
- https://github.com/keras-team/keras/blob/master/examples/mnist_mlp.py
mnist-net2net
#############
*Implementation of 'Net2Net: Accelerating Learning via Knowledge Transfer'
with MNIST in Keras*
Operations
==========
train
^^^^^
*Train the network*
Flags
-----
**batch-size**
*Training batch size (default is 32)*
**epochs**
*Number of epochs to train (default is 3)*
References
==========
- https://github.com/keras-team/keras/blob/master/examples/mnist_net2net.py
- http://arxiv.org/abs/1511.05641
mnist-siamese
#############
*Siamese MLP classifier for MNIST in Keras*
Operations
==========
train
^^^^^
*Train the MLP*
Flags
-----
**batch-size**
*Training batch size (default is 128)*
**epochs**
*Number of epochs to train (default is 20)*
References
==========
- https://github.com/keras-team/keras/blob/master/examples/mnist_siamese.py
- http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf
mnist-swwae
###########
*Stacked what-where autoencoder for MNIST in Keras*
Operations
==========
train
^^^^^
*Train the MLP*
Flags
-----
**batch-size**
*Training batch size (default is 128)*
**epochs**
*Number of epochs to train (default is 5)*
**pool-size**
*kernel size used for the MaxPooling2D (default is 2)
Choices:
2
3
*
References
==========
- https://github.com/keras-team/keras/blob/master/examples/mnist_swwae.py
- https://arxiv.org/abs/1311.2901v3
- https://arxiv.org/abs/1506.02351v8
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distribution
File details
Details for the file gpkg.keras.mnist-0.4.0-py2.py3-none-any.whl
.
File metadata
- Download URL: gpkg.keras.mnist-0.4.0-py2.py3-none-any.whl
- Upload date:
- Size: 5.9 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a593b56e7ae9f69809f72729e1791716645289b194839aee6d396e0539f38b10 |
|
MD5 | e0c66e4cb8705627c1cba0964479d652 |
|
BLAKE2b-256 | 667957a995a702f1562c7e2695d7e221313d139d43a483605e5204e6570cc0b4 |