Skip to main content

MNIST related models in Keras

Project description



Models
######

mnist-acgan
###########

*Auxiliary Classifier Generative Adversarial Network (ACGAN) for MNIST in
Keras*

Operations
==========

train
^^^^^

*Train the ACGAN*

Flags
-----

**batch-size**
*Training batch size (default is 100)*

**beta-1**
*Beta 1 (default is 0.5)*

**epochs**
*Number of epochs to train (default is 100)*

**learning-rate**
*Learning rate (default is 0.0002)*

References
==========

- https://github.com/keras-team/keras/blob/master/examples/mnist_acgan.py
- https://arxiv.org/abs/1511.06434

mnist-cnn
#########

*Convolutional neural network (CNN) classifier for MNIST in Keras*

Operations
==========

train
^^^^^

*Train the CNN*

Flags
-----

**batch-size**
*Training batch size (default is 128)*

**epochs**
*Number of epochs to train (default is 12)*

References
==========

- https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py

mnist-denoising-autoencoder
###########################

*Denoising autoencoder for MNIST in Keras*

Operations
==========

train
^^^^^

*Train the autoencoder*

Flags
-----

**batch-size**
*Training batch size (default is 128)*

**epochs**
*Number of epochs to train (default is 30)*

References
==========

- https://github.com/keras-team/keras/blob/master/examples/mnist_denoising_autoencoder.py

mnist-hierarchical-rnn
######################

*Hierarchical RNN (HRNN) classifier for MNIST in Keras*

Operations
==========

train
^^^^^

*Train the HRNN*

Flags
-----

**batch-size**
*Training batch size (default is 32)*

**epochs**
*Number of epochs to train (default is 5)*

References
==========

- https://github.com/keras-team/keras/blob/master/examples/mnist_hierarchical_rnn.py
- https://arxiv.org/abs/1506.01057
- http://ieeexplore.ieee.org/document/7298714/

mnist-irnn
##########

*Implementation of 'A Simple Way to Initialize Recurrent Networks of Rectified
Linear Units' with MNIST in Keras*

Operations
==========

train
^^^^^

*Train the RNN*

Flags
-----

**batch-size**
*Training batch size (default is 32)*

**epochs**
*Number of epochs to train (default is 200)*

**learning-rate**
*Learning rate (default is 1e-06)*

References
==========

- https://github.com/keras-team/keras/blob/master/examples/mnist_irnn.py
- http://arxiv.org/pdf/1504.00941v2.pdf

mnist-mlp
#########

*Multilayer perceptron (MLP) classifier for MNIST in Keras*

Operations
==========

train
^^^^^

*Train the MLP*

Flags
-----

**batch-size**
*Training batch size (default is 128)*

**epochs**
*Number of epochs to train (default is 20)*

References
==========

- https://github.com/keras-team/keras/blob/master/examples/mnist_mlp.py

mnist-net2net
#############

*Implementation of 'Net2Net: Accelerating Learning via Knowledge Transfer'
with MNIST in Keras*

Operations
==========

train
^^^^^

*Train the network*

Flags
-----

**batch-size**
*Training batch size (default is 32)*

**epochs**
*Number of epochs to train (default is 3)*

References
==========

- https://github.com/keras-team/keras/blob/master/examples/mnist_net2net.py
- http://arxiv.org/abs/1511.05641

mnist-siamese
#############

*Siamese MLP classifier for MNIST in Keras*

Operations
==========

train
^^^^^

*Train the MLP*

Flags
-----

**batch-size**
*Training batch size (default is 128)*

**epochs**
*Number of epochs to train (default is 20)*

References
==========

- https://github.com/keras-team/keras/blob/master/examples/mnist_siamese.py
- http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf

mnist-swwae
###########

*Stacked what-where autoencoder for MNIST in Keras*

Operations
==========

train
^^^^^

*Train the MLP*

Flags
-----

**batch-size**
*Training batch size (default is 128)*

**epochs**
*Number of epochs to train (default is 5)*

**pool-size**
*kernel size used for the MaxPooling2D (default is 2)

Choices:
2
3

*

References
==========

- https://github.com/keras-team/keras/blob/master/examples/mnist_swwae.py
- https://arxiv.org/abs/1311.2901v3
- https://arxiv.org/abs/1506.02351v8


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

gpkg.keras.mnist-0.4.0-py2.py3-none-any.whl (5.9 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file gpkg.keras.mnist-0.4.0-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for gpkg.keras.mnist-0.4.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 a593b56e7ae9f69809f72729e1791716645289b194839aee6d396e0539f38b10
MD5 e0c66e4cb8705627c1cba0964479d652
BLAKE2b-256 667957a995a702f1562c7e2695d7e221313d139d43a483605e5204e6570cc0b4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page