Skip to main content

MNIST models in Keras (Guild AI)

Project description

gpkg.keras.mnist
################

*MNIST models in Keras (Guild AI)*

Models
######

_check
======

Operations
^^^^^^^^^^

acgan
-----

all
---

cnn
---

denoising-autoencoder
---------------------

hierarchical-rnn
----------------

irnn
----

mlp
---

net2net
-------

siamese
-------

swwae
-----


acgan
=====

*Auxiliary Classifier Generative Adversarial Network (ACGAN) for MNIST in
Keras*

Operations
^^^^^^^^^^

train
-----
*Train the model*

Flags
`````
**batch-size**
*Training batch size (default is 100)*

**beta-1**
*Beta 1 (default is 0.5)*

**epochs**
*Number of epochs to train (default is 100)*

**learning-rate**
*Learning rate (default is 0.0002)*

References
^^^^^^^^^^

- https://github.com/keras-team/keras/blob/master/examples/mnist_acgan.py
- https://arxiv.org/abs/1511.06434

cnn
===

*Convolutional neural network (CNN) classifier for MNIST in Keras*

Operations
^^^^^^^^^^

train
-----
*Train the model*

Flags
`````
**batch-size**
*Training batch size (default is 128)*

**epochs**
*Number of epochs to train (default is 12)*

References
^^^^^^^^^^

- https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py

denoising-autoencoder
=====================

*Denoising autoencoder for MNIST in Keras*

Operations
^^^^^^^^^^

train
-----
*Train the model*

Flags
`````
**batch-size**
*Training batch size (default is 128)*

**epochs**
*Number of epochs to train (default is 30)*

References
^^^^^^^^^^

- https://github.com/keras-team/keras/blob/master/examples/mnist_denoising_autoencoder.py

hierarchical-rnn
================

*Hierarchical RNN (HRNN) classifier for MNIST in Keras*

Operations
^^^^^^^^^^

train
-----
*Train the model*

Flags
`````
**batch-size**
*Training batch size (default is 32)*

**epochs**
*Number of epochs to train (default is 5)*

References
^^^^^^^^^^

- https://github.com/keras-team/keras/blob/master/examples/mnist_hierarchical_rnn.py
- https://arxiv.org/abs/1506.01057
- http://ieeexplore.ieee.org/document/7298714/

irnn
====

*Implementation of 'A Simple Way to Initialize Recurrent Networks of Rectified
Linear Units' with MNIST in Keras*

Operations
^^^^^^^^^^

train
-----
*Train the model*

Flags
`````
**batch-size**
*Training batch size (default is 32)*

**epochs**
*Number of epochs to train (default is 200)*

**learning-rate**
*Learning rate (default is 1.0e-06)*

References
^^^^^^^^^^

- https://github.com/keras-team/keras/blob/master/examples/mnist_irnn.py
- http://arxiv.org/pdf/1504.00941v2.pdf

mlp
===

*Multilayer perceptron (MLP) classifier for MNIST in Keras*

Operations
^^^^^^^^^^

train
-----
*Train the model*

Flags
`````
**batch-size**
*Training batch size (default is 128)*

**epochs**
*Number of epochs to train (default is 20)*

References
^^^^^^^^^^

- https://github.com/keras-team/keras/blob/master/examples/mnist_mlp.py

net2net
=======

*Implementation of 'Net2Net: Accelerating Learning via Knowledge Transfer'
with MNIST in Keras*

Operations
^^^^^^^^^^

train
-----
*Train the model*

Flags
`````
**batch-size**
*Training batch size (default is 32)*

**epochs**
*Number of epochs to train (default is 3)*

References
^^^^^^^^^^

- https://github.com/keras-team/keras/blob/master/examples/mnist_net2net.py
- http://arxiv.org/abs/1511.05641

siamese
=======

*Siamese MLP classifier for MNIST in Keras*

Operations
^^^^^^^^^^

train
-----
*Train the model*

Flags
`````
**batch-size**
*Training batch size (default is 128)*

**epochs**
*Number of epochs to train (default is 20)*

References
^^^^^^^^^^

- https://github.com/keras-team/keras/blob/master/examples/mnist_siamese.py
- http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf

swwae
=====

*Stacked what-where autoencoder for MNIST in Keras*

Operations
^^^^^^^^^^

train
-----
*Train the model*

Flags
`````
**batch-size**
*Training batch size (default is 128)*

**epochs**
*Number of epochs to train (default is 5)*

**pool-size**
*kernel size used for the MaxPooling2D (default is 2)

Choices: [2, 3]

*

References
^^^^^^^^^^

- https://github.com/keras-team/keras/blob/master/examples/mnist_swwae.py
- https://arxiv.org/abs/1311.2901v3
- https://arxiv.org/abs/1506.02351v8


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

gpkg.keras.mnist-0.6.0.dev1-py2.py3-none-any.whl (6.3 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file gpkg.keras.mnist-0.6.0.dev1-py2.py3-none-any.whl.

File metadata

  • Download URL: gpkg.keras.mnist-0.6.0.dev1-py2.py3-none-any.whl
  • Upload date:
  • Size: 6.3 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.19.6 CPython/2.7.12

File hashes

Hashes for gpkg.keras.mnist-0.6.0.dev1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 56231bef2292b599daa46d5a3df5a8e82f240b28e5488777e5e9a88b0d1e38a5
MD5 26cf262891a6222c1862c4c82e203f0a
BLAKE2b-256 7439e3e7f961040317a33a0ff6257ab2bab1f08e918dfb923c09f3b1b6131338

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page