MNIST models in Keras (Guild AI)
Project description
gpkg.keras.mnist
################
*MNIST models in Keras (Guild AI)*
Models
######
acgan
=====
*Auxiliary Classifier Generative Adversarial Network (ACGAN) for MNIST in
Keras*
Operations
^^^^^^^^^^
train
-----
*Train the model*
Flags
`````
**batch_size**
*Training batch size (default is 100)*
**beta_1**
*Beta 1 (default is 0.5)*
**epochs**
*Number of epochs to train (default is 100)*
**lr**
*Learning rate (default is 0.0002)*
References
^^^^^^^^^^
- https://github.com/keras-team/keras/blob/master/examples/mnist_acgan.py
- https://arxiv.org/abs/1511.06434
cnn
===
*Convolutional neural network (CNN) classifier for MNIST in Keras*
Operations
^^^^^^^^^^
train
-----
*Train the model*
Flags
`````
**batch_size**
*Training batch size (default is 128)*
**epochs**
*Number of epochs to train (default is 12)*
References
^^^^^^^^^^
- https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py
denoising-autoencoder
=====================
*Denoising autoencoder for MNIST in Keras*
Operations
^^^^^^^^^^
train
-----
*Train the model*
Flags
`````
**batch_size**
*Training batch size (default is 128)*
**epochs**
*Number of epochs to train (default is 30)*
References
^^^^^^^^^^
- https://github.com/keras-team/keras/blob/master/examples/mnist_denoising_autoencoder.py
hierarchical-rnn
================
*Hierarchical RNN (HRNN) classifier for MNIST in Keras*
Operations
^^^^^^^^^^
train
-----
*Train the model*
Flags
`````
**batch_size**
*Training batch size (default is 32)*
**epochs**
*Number of epochs to train (default is 5)*
References
^^^^^^^^^^
- https://github.com/keras-team/keras/blob/master/examples/mnist_hierarchical_rnn.py
- https://arxiv.org/abs/1506.01057
- http://ieeexplore.ieee.org/document/7298714/
irnn
====
*Implementation of 'A Simple Way to Initialize Recurrent Networks of Rectified
Linear Units' with MNIST in Keras*
Operations
^^^^^^^^^^
train
-----
*Train the model*
Flags
`````
**batch_size**
*Training batch size (default is 32)*
**epochs**
*Number of epochs to train (default is 200)*
**lr**
*Learning rate (default is 1.0e-06)*
References
^^^^^^^^^^
- https://github.com/keras-team/keras/blob/master/examples/mnist_irnn.py
- http://arxiv.org/pdf/1504.00941v2.pdf
mlp
===
*Multilayer perceptron (MLP) classifier for MNIST in Keras*
Operations
^^^^^^^^^^
train
-----
*Train the model*
Flags
`````
**batch_size**
*Training batch size (default is 128)*
**epochs**
*Number of epochs to train (default is 20)*
References
^^^^^^^^^^
- https://github.com/keras-team/keras/blob/master/examples/mnist_mlp.py
net2net
=======
*Implementation of 'Net2Net: Accelerating Learning via Knowledge Transfer'
with MNIST in Keras*
Operations
^^^^^^^^^^
train
-----
*Train the model*
Flags
`````
**batch_size**
*Training batch size (default is 32)*
**epochs**
*Number of epochs to train (default is 3)*
References
^^^^^^^^^^
- https://github.com/keras-team/keras/blob/master/examples/mnist_net2net.py
- http://arxiv.org/abs/1511.05641
siamese
=======
*Siamese MLP classifier for MNIST in Keras*
Operations
^^^^^^^^^^
train
-----
*Train the model*
Flags
`````
**batch_size**
*Training batch size (default is 128)*
**epochs**
*Number of epochs to train (default is 20)*
References
^^^^^^^^^^
- https://github.com/keras-team/keras/blob/master/examples/mnist_siamese.py
- http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf
swwae
=====
*Stacked what-where autoencoder for MNIST in Keras*
Operations
^^^^^^^^^^
train
-----
*Train the model*
Flags
`````
**batch_size**
*Training batch size (default is 128)*
**epochs**
*Number of epochs to train (default is 5)*
**pool_size**
*kernel size used for the MaxPooling2D (default is 2)
Choices: [2, 3]
*
References
^^^^^^^^^^
- https://github.com/keras-team/keras/blob/master/examples/mnist_swwae.py
- https://arxiv.org/abs/1311.2901v3
- https://arxiv.org/abs/1506.02351v8
_check
======
Operations
^^^^^^^^^^
acgan
-----
all
---
cnn
---
denoising-autoencoder
---------------------
hierarchical-rnn
----------------
irnn
----
mlp
---
net2net
-------
siamese
-------
swwae
-----
################
*MNIST models in Keras (Guild AI)*
Models
######
acgan
=====
*Auxiliary Classifier Generative Adversarial Network (ACGAN) for MNIST in
Keras*
Operations
^^^^^^^^^^
train
-----
*Train the model*
Flags
`````
**batch_size**
*Training batch size (default is 100)*
**beta_1**
*Beta 1 (default is 0.5)*
**epochs**
*Number of epochs to train (default is 100)*
**lr**
*Learning rate (default is 0.0002)*
References
^^^^^^^^^^
- https://github.com/keras-team/keras/blob/master/examples/mnist_acgan.py
- https://arxiv.org/abs/1511.06434
cnn
===
*Convolutional neural network (CNN) classifier for MNIST in Keras*
Operations
^^^^^^^^^^
train
-----
*Train the model*
Flags
`````
**batch_size**
*Training batch size (default is 128)*
**epochs**
*Number of epochs to train (default is 12)*
References
^^^^^^^^^^
- https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py
denoising-autoencoder
=====================
*Denoising autoencoder for MNIST in Keras*
Operations
^^^^^^^^^^
train
-----
*Train the model*
Flags
`````
**batch_size**
*Training batch size (default is 128)*
**epochs**
*Number of epochs to train (default is 30)*
References
^^^^^^^^^^
- https://github.com/keras-team/keras/blob/master/examples/mnist_denoising_autoencoder.py
hierarchical-rnn
================
*Hierarchical RNN (HRNN) classifier for MNIST in Keras*
Operations
^^^^^^^^^^
train
-----
*Train the model*
Flags
`````
**batch_size**
*Training batch size (default is 32)*
**epochs**
*Number of epochs to train (default is 5)*
References
^^^^^^^^^^
- https://github.com/keras-team/keras/blob/master/examples/mnist_hierarchical_rnn.py
- https://arxiv.org/abs/1506.01057
- http://ieeexplore.ieee.org/document/7298714/
irnn
====
*Implementation of 'A Simple Way to Initialize Recurrent Networks of Rectified
Linear Units' with MNIST in Keras*
Operations
^^^^^^^^^^
train
-----
*Train the model*
Flags
`````
**batch_size**
*Training batch size (default is 32)*
**epochs**
*Number of epochs to train (default is 200)*
**lr**
*Learning rate (default is 1.0e-06)*
References
^^^^^^^^^^
- https://github.com/keras-team/keras/blob/master/examples/mnist_irnn.py
- http://arxiv.org/pdf/1504.00941v2.pdf
mlp
===
*Multilayer perceptron (MLP) classifier for MNIST in Keras*
Operations
^^^^^^^^^^
train
-----
*Train the model*
Flags
`````
**batch_size**
*Training batch size (default is 128)*
**epochs**
*Number of epochs to train (default is 20)*
References
^^^^^^^^^^
- https://github.com/keras-team/keras/blob/master/examples/mnist_mlp.py
net2net
=======
*Implementation of 'Net2Net: Accelerating Learning via Knowledge Transfer'
with MNIST in Keras*
Operations
^^^^^^^^^^
train
-----
*Train the model*
Flags
`````
**batch_size**
*Training batch size (default is 32)*
**epochs**
*Number of epochs to train (default is 3)*
References
^^^^^^^^^^
- https://github.com/keras-team/keras/blob/master/examples/mnist_net2net.py
- http://arxiv.org/abs/1511.05641
siamese
=======
*Siamese MLP classifier for MNIST in Keras*
Operations
^^^^^^^^^^
train
-----
*Train the model*
Flags
`````
**batch_size**
*Training batch size (default is 128)*
**epochs**
*Number of epochs to train (default is 20)*
References
^^^^^^^^^^
- https://github.com/keras-team/keras/blob/master/examples/mnist_siamese.py
- http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf
swwae
=====
*Stacked what-where autoencoder for MNIST in Keras*
Operations
^^^^^^^^^^
train
-----
*Train the model*
Flags
`````
**batch_size**
*Training batch size (default is 128)*
**epochs**
*Number of epochs to train (default is 5)*
**pool_size**
*kernel size used for the MaxPooling2D (default is 2)
Choices: [2, 3]
*
References
^^^^^^^^^^
- https://github.com/keras-team/keras/blob/master/examples/mnist_swwae.py
- https://arxiv.org/abs/1311.2901v3
- https://arxiv.org/abs/1506.02351v8
_check
======
Operations
^^^^^^^^^^
acgan
-----
all
---
cnn
---
denoising-autoencoder
---------------------
hierarchical-rnn
----------------
irnn
----
mlp
---
net2net
-------
siamese
-------
swwae
-----
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distribution
File details
Details for the file gpkg.keras.mnist-0.6.0.dev3-py2.py3-none-any.whl
.
File metadata
- Download URL: gpkg.keras.mnist-0.6.0.dev3-py2.py3-none-any.whl
- Upload date:
- Size: 6.3 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.19.6 CPython/2.7.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 61a533bb874ede3533097690e83962eea9067e25c9d6f9a8c6cad3a1ac45ba58 |
|
MD5 | 40055fbf6ecc9c107998b59272d138d8 |
|
BLAKE2b-256 | 946093b60f034d7d962eb1d7056b0e4566537031f3169016916614493bbbbffd |