Image generators from the Magenta project (Guild AI)
Project description
gpkg.magenta.image
##################
*Image generators from the Magenta project (Guild AI)*
Models
######
arbitrary-stylize
=================
*Fast artistic style transfer using arbitrary painting styles*
Operations
^^^^^^^^^^
generate
--------
*Generate stylized images using one or more style images*
Flags
`````
**content-images**
*Path to content images (include glob pattern matching images) (required)*
**image-size**
*Size of images (1024)*
**interpolation-weights**
*Interpolation weights ([1.0])
This value is a list of float values inside square brackets. Each value is
a weight for interpolation between the parameters of the identity
transform and the style parameters of the style image.
The larger the weight is the strength of stylization is more. Weight of
1.0 means the normal style transfer and weight of 0.0 means identity
transform. *
**style-images**
*Path to style images (include glob pattern matching images) (required)*
References
^^^^^^^^^^
- https://github.com/tensorflow/magenta/tree/master/magenta/models/arbitrary_image_stylization
- https://arxiv.org/abs/1705.06830
- https://arxiv.org/abs/1610.07629
- https://arxiv.org/abs/1603.08155
- https://arxiv.org/abs/1508.06576
pretrained-stylize
==================
*Implementation of 'A Learned Representation for Artistic Style'*
Operations
^^^^^^^^^^
generate
--------
*Generate stylized image using a pretrained model*
Flags
`````
**image**
*Image to stylize (required)*
**style**
*Style to apply (monet or varied) (required)
Choices:
monet Use Monet style
varied Use varied style
*
References
^^^^^^^^^^
- https://github.com/tensorflow/magenta/tree/master/magenta/models/image_stylization
- https://arxiv.org/abs/1610.07629
##################
*Image generators from the Magenta project (Guild AI)*
Models
######
arbitrary-stylize
=================
*Fast artistic style transfer using arbitrary painting styles*
Operations
^^^^^^^^^^
generate
--------
*Generate stylized images using one or more style images*
Flags
`````
**content-images**
*Path to content images (include glob pattern matching images) (required)*
**image-size**
*Size of images (1024)*
**interpolation-weights**
*Interpolation weights ([1.0])
This value is a list of float values inside square brackets. Each value is
a weight for interpolation between the parameters of the identity
transform and the style parameters of the style image.
The larger the weight is the strength of stylization is more. Weight of
1.0 means the normal style transfer and weight of 0.0 means identity
transform. *
**style-images**
*Path to style images (include glob pattern matching images) (required)*
References
^^^^^^^^^^
- https://github.com/tensorflow/magenta/tree/master/magenta/models/arbitrary_image_stylization
- https://arxiv.org/abs/1705.06830
- https://arxiv.org/abs/1610.07629
- https://arxiv.org/abs/1603.08155
- https://arxiv.org/abs/1508.06576
pretrained-stylize
==================
*Implementation of 'A Learned Representation for Artistic Style'*
Operations
^^^^^^^^^^
generate
--------
*Generate stylized image using a pretrained model*
Flags
`````
**image**
*Image to stylize (required)*
**style**
*Style to apply (monet or varied) (required)
Choices:
monet Use Monet style
varied Use varied style
*
References
^^^^^^^^^^
- https://github.com/tensorflow/magenta/tree/master/magenta/models/image_stylization
- https://arxiv.org/abs/1610.07629
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distribution
File details
Details for the file gpkg.magenta.image-0.5.1.dev1-py2.py3-none-any.whl
.
File metadata
- Download URL: gpkg.magenta.image-0.5.1.dev1-py2.py3-none-any.whl
- Upload date:
- Size: 5.6 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.9.1 pkginfo/1.4.2 requests/2.18.4 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.19.6 CPython/2.7.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e7cd91b9095da36eccc2f5dac745492e0c021e15d9d4a361f8ecf3eb5045c5a5 |
|
MD5 | 405cd0b4bddb87ab9d640c14b48cc000 |
|
BLAKE2b-256 | 355fef2d7a65077be6dadcb544d8db4bece0f2c42011436f9260120e8d16ee63 |