Skip to main content

Discover genotype-phenotype correlations with GA4GH phenopackets

Project description

Build status GitHub release PyPi downloads PyPI - Python Version

GPSEA is a Python library for discovery of genotype-phenotype associations.

An example of simple genotype-phenotype association analysis

# Load HPO
import hpotk

store = hpotk.configure_ontology_store()
hpo = store.load_minimal_hpo()

# Load a cohort of phenopackets
from gpsea.data import get_toy_cohort

cohort = get_toy_cohort()

# Analyze genotype-phenotype associations
from gpsea.analysis import configure_cohort_analysis
from gpsea.analysis.predicate import PatientCategories

from gpsea.model import VariantEffect

cohort_analysis = configure_cohort_analysis(cohort, hpo)
frameshift = cohort_analysis.compare_by_variant_effect(VariantEffect.FRAMESHIFT_VARIANT, tx_id='NM_1234.5')

frameshift.summarize(hpo, category=PatientCategories.YES)

provides a pandas data frame with genotype-phenotype correlations:

FRAMESHIFT_VARIANT on NM_1234.5                                    No                Yes
                                                                Count   Percent    Count   Percent    p value    Corrected p value
    Arachnodactyly [HP:0001166]                                  1/10       10%    13/16       81%   0.000781             0.020299
    Abnormality of the musculature [HP:0003011]                   6/6      100%    11/11      100%   1.000000             1.000000
    Abnormal nervous system physiology [HP:0012638]               9/9      100%    15/15      100%   1.000000             1.000000
    ...                                                           ...       ...      ...       ...        ...                  ...

Documentation

Check out the User guide and the API reference for more info:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gpsea-0.2.0.tar.gz (140.0 kB view details)

Uploaded Source

Built Distribution

gpsea-0.2.0-py3-none-any.whl (167.3 kB view details)

Uploaded Python 3

File details

Details for the file gpsea-0.2.0.tar.gz.

File metadata

  • Download URL: gpsea-0.2.0.tar.gz
  • Upload date:
  • Size: 140.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.3

File hashes

Hashes for gpsea-0.2.0.tar.gz
Algorithm Hash digest
SHA256 8fd8b1f1126addecef91262abda3b967ba9967097a5dafbc3e46ad87c22b3e32
MD5 42f50adca8c903b9cc64e9fb18b171d7
BLAKE2b-256 bfcfd66ab42b579cfa3e9242697e9c3fd45595399727805eb2724ed0678d121c

See more details on using hashes here.

File details

Details for the file gpsea-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: gpsea-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 167.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.3

File hashes

Hashes for gpsea-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 c45c3250d29fcbdedfb9cd0b953ac0d39f6cae4ee5f98adeb5aa30d19f3e3a04
MD5 ff73a99dcc796a06695062a3c1144b7f
BLAKE2b-256 b714d00cdce3936f88296de9267a7dd2d3854cc14c0738084b9e1688a2af46e6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page