Skip to main content

Lightweight computation graphs for Python

Project description

Supported Python versions of latest release in PyPi Development Status Latest release in GitHub Latest version in PyPI Travis continuous integration testing ok? (Linux) ReadTheDocs ok? cover-status Code Style Apache License, version 2.0

Github watchers Github stargazers Github forks Issues count

It’s a DAG all the way down!

sample graphtik plot

Lightweight computation graphs for Python

Graphtik is an an understandable and lightweight Python module for building and running ordered graphs of computations. The API posits a fair compromise between features and complexity, without precluding any. It can be used as is to build machine learning pipelines for data science projects. It should be extendable to act as the core for a custom ETL engine or a workflow-processor for interdependent files and processes.

Graphtik sprang from Graphkit to experiment with Python 3.6+ features.

Quick start

Here’s how to install:

pip install graphtik

OR with dependencies for plotting support (and you need to install Graphviz suite separately, with your OS tools):

pip install graphtik[plot]

Here’s a Python script with an example Graphtik computation graph that produces multiple outputs (a * b, a - a * b, and abs(a - a * b) ** 3):

>>> from operator import mul, sub
>>> from functools import partial
>>> from graphtik import compose, operation

>>> # Computes |a|^p.
>>> def abspow(a, p):
...     c = abs(a) ** p
...     return c

Compose the mul, sub, and abspow functions into a computation graph:

>>> graphop = compose(name="graphop")(
...     operation(name="mul1", needs=["a", "b"], provides=["ab"])(mul),
...     operation(name="sub1", needs=["a", "ab"], provides=["a_minus_ab"])(sub),
...     operation(name="abspow1", needs=["a_minus_ab"], provides=["abs_a_minus_ab_cubed"])
...     (partial(abspow, p=3))
... )

Run the graph and request all of the outputs:

>>> graphop({'a': 2, 'b': 5})
{'a': 2, 'b': 5, 'ab': 10, 'a_minus_ab': -8, 'abs_a_minus_ab_cubed': 512}

>>> graphop({'a': 2, 'b': 5}, outputs=["a_minus_ab"])
{'a_minus_ab': -8}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

graphtik-2.1.1.tar.gz (35.8 kB view details)

Uploaded Source

Built Distribution

graphtik-2.1.1-py2.py3-none-any.whl (29.8 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file graphtik-2.1.1.tar.gz.

File metadata

  • Download URL: graphtik-2.1.1.tar.gz
  • Upload date:
  • Size: 35.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.1

File hashes

Hashes for graphtik-2.1.1.tar.gz
Algorithm Hash digest
SHA256 6c73510776546e3356f2f8dd2f0293002da998354dd3ee4f2a35424d81898067
MD5 586e5db193cdfa5a8f45b11f5339ea34
BLAKE2b-256 618dca0446870545257160c1bfb33d14feb8b6d4165ab43a6df8a0e5343b5fa3

See more details on using hashes here.

File details

Details for the file graphtik-2.1.1-py2.py3-none-any.whl.

File metadata

  • Download URL: graphtik-2.1.1-py2.py3-none-any.whl
  • Upload date:
  • Size: 29.8 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.1

File hashes

Hashes for graphtik-2.1.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 a65b52776cf163bcde3c039b482545eb56c4946264113a9b3ce93b65614da27a
MD5 8cfe803bf59e979463b1d974e8521188
BLAKE2b-256 34558a6bb757d1825e35a5f764124f6670978bbf4554ab8f916d6c4d9bf59d95

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page