Skip to main content

Lightweight computation graphs for Python

Project description

Supported Python versions of latest release in PyPi Development Status Latest release in GitHub Latest version in PyPI Travis continuous integration testing ok? (Linux) ReadTheDocs ok? cover-status Code Style Apache License, version 2.0

Github watchers Github stargazers Github forks Issues count

It’s a DAG all the way down!

sample graphtik plot

Lightweight computation graphs for Python

Graphtik is an an understandable and lightweight Python module for building and running ordered graphs of computations. The API posits a fair compromise between features and complexity, without precluding any. It can be used as is to build machine learning pipelines for data science projects. It should be extendable to act as the core for a custom ETL engine or a workflow-processor for interdependent files and processes.

Graphtik sprang from Graphkit to experiment with Python 3.6+ features.

Quick start

Here’s how to install:

pip install graphtik

OR with dependencies for plotting support (and you need to install Graphviz suite separately, with your OS tools):

pip install graphtik[plot]

Here’s a Python script with an example Graphtik computation graph that produces multiple outputs (a * b, a - a * b, and abs(a - a * b) ** 3):

>>> from operator import mul, sub
>>> from functools import partial
>>> from graphtik import compose, operation

>>> # Computes |a|^p.
>>> def abspow(a, p):
...     c = abs(a) ** p
...     return c

Compose the mul, sub, and abspow functions into a computation graph:

>>> graphop = compose(
...     "graphop",
...     operation(name="mul1", needs=["a", "b"], provides=["ab"])(mul),
...     operation(name="sub1", needs=["a", "ab"], provides=["a_minus_ab"])(sub),
...     operation(name="abspow1", needs=["a_minus_ab"], provides=["abs_a_minus_ab_cubed"])
...     (partial(abspow, p=3))
... )

Run the graph and request all of the outputs:

>>> graphop(a=2, b=5)
{'a': 2, 'b': 5, 'ab': 10, 'a_minus_ab': -8, 'abs_a_minus_ab_cubed': 512}

… or request a subset of outputs:

>>> solution = graphop.compute({'a': 2, 'b': 5}, outputs=["a_minus_ab"])
>>> solution
{'a_minus_ab': -8}

… and plot the results (if in jupyter, no need to create the file):

>>> solution.plot('graphop.svg')    # doctest: +SKIP

sample graphtik plot graphtik legend

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

graphtik-4.4.1.tar.gz (63.7 kB view details)

Uploaded Source

Built Distribution

graphtik-4.4.1-py2.py3-none-any.whl (41.9 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file graphtik-4.4.1.tar.gz.

File metadata

  • Download URL: graphtik-4.4.1.tar.gz
  • Upload date:
  • Size: 63.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.41.0 CPython/3.7.1

File hashes

Hashes for graphtik-4.4.1.tar.gz
Algorithm Hash digest
SHA256 ba4e88452d09202e70a2a137d4a474d33b39b28b78f99c314dae390d59ab4dc1
MD5 abf044c6ca0852675af65c845398bd06
BLAKE2b-256 9320ad89575d5b000d2da715cc23e83704abb8379f83b16c1baa70e435fb1a85

See more details on using hashes here.

File details

Details for the file graphtik-4.4.1-py2.py3-none-any.whl.

File metadata

  • Download URL: graphtik-4.4.1-py2.py3-none-any.whl
  • Upload date:
  • Size: 41.9 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.41.0 CPython/3.7.1

File hashes

Hashes for graphtik-4.4.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 27fdebe16f8acdc631e445860762009595ba7f1d3c99ca729e0dfd873870ea5b
MD5 580794f98d95f47a27e025362642c4f4
BLAKE2b-256 763c4fe6b99245ce833240314cbad72622f292e1553eb05c80823a5d3a4168c6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page