Skip to main content

A lightweight Python-3.6+ lib for solving & executing graphs of functions

Project description

Supported Python versions of latest release in PyPi Development Status Latest release in GitHub Latest version in PyPI (build-version: v6.2.0, build-date: 2020-04-19T11:09:38.056913) Travis continuous integration testing ok? (Linux) ReadTheDocs ok? cover-status Code Style Apache License, version 2.0

Github watchers Github stargazers Github forks Issues count

It’s a DAG all the way down!

sample graphtik plot

Lightweight computation graphs for Python

Graphtik is an an understandable and lightweight Python module for building and running ordered graphs of computations. The API posits a fair compromise between features and complexity, without precluding any. It can be used as is to build machine learning pipelines for data science projects. It should be extendable to act as the core for a custom ETL engine or a workflow-processor for interdependent files and processes.

Quick start

Here’s how to install:

pip install graphtik

OR with various “extras” dependencies, such as, for plotting:

pip install graphtik[plot]
. Tip::

Supported extras:

plot

for plotting with Graphviz,

matplot

for plotting in maplotlib windows

sphinx

for embedding plots in sphinx-generated sites,

test

for running pytests,

dill

may help for pickling parallel tasks - see marshalling term and set_marshal_tasks() configuration.

all

all of the above, plus development libraries, eg black formatter.

dev

like all

Let’s build a graphtik computation graph that produces x3 outputs out of 2 inputs a and b:

  • a x b

  • a - a x b

  • |a - a x b| ^ 3

>>> from graphtik import compose, operation
>>> from operator import mul, sub
>>> @operation(name="abs qubed",
...            needs=["a_minus_ab"],
...            provides=["abs_a_minus_ab_cubed"])
... def abs_qubed(a):
...     return abs(a) ** 3

Compose the abspow function along the mul & sub built-ins into a computation graph:

>>> graphop = compose("graphop",
...     operation(needs=["a", "b"], provides=["ab"])(mul),
...     operation(needs=["a", "ab"], provides=["a_minus_ab"])(sub),
...     abs_qubed,
... )
>>> graphop
NetworkOperation('graphop', needs=['a', 'b', 'ab', 'a_minus_ab'],
                    provides=['ab', 'a_minus_ab', 'abs_a_minus_ab_cubed'],
                    x3 ops: mul, sub, abs qubed)

Run the graph and request all of the outputs:

>>> graphop(a=2, b=5)
{'a': 2, 'b': 5, 'ab': 10, 'a_minus_ab': -8, 'abs_a_minus_ab_cubed': 512}

… or request a subset of outputs:

>>> solution = graphop.compute({'a': 2, 'b': 5}, outputs=["a_minus_ab"])
>>> solution
{'a_minus_ab': -8}

… and plot the results (if in jupyter, no need to create the file):

>>> solution.plot('graphop.svg')    # doctest: +SKIP

sample graphtik plot graphtik legend

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

graphtik-6.2.0.tar.gz (102.5 kB view details)

Uploaded Source

Built Distribution

graphtik-6.2.0-py2.py3-none-any.whl (73.6 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file graphtik-6.2.0.tar.gz.

File metadata

  • Download URL: graphtik-6.2.0.tar.gz
  • Upload date:
  • Size: 102.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for graphtik-6.2.0.tar.gz
Algorithm Hash digest
SHA256 54e91474b1a8b607dd1b1a2f8926b656037718771805743978fdd0574e96dfdc
MD5 8125022a2b799173c2d4314915767f1b
BLAKE2b-256 403418dc15bead65ff886671d22e3018d4d614deb88962f35d8793255d48ebc3

See more details on using hashes here.

File details

Details for the file graphtik-6.2.0-py2.py3-none-any.whl.

File metadata

  • Download URL: graphtik-6.2.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 73.6 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for graphtik-6.2.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 7ecac8a9464265194c7d28ce87f87d82634ec987a07949ee6fd4b7c5a2e57068
MD5 e7000a52b604af13fed90532bff5c292
BLAKE2b-256 0a1b2f6c90834a4c9c0cf19cdac2298532d4231a8a4d29df88068d2c54106864

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page