Skip to main content

A lightweight Python-3.6+ lib for solving & executing graphs of functions

Project description

Supported Python versions of latest release in PyPi Development Status Latest release in GitHub Latest version in PyPI (build-version: v7.1.1, build-date: 2020-05-05T07:50:25.379019) Travis continuous integration testing ok? (Linux) ReadTheDocs ok? cover-status Code Style Apache License, version 2.0

Github watchers Github stargazers Github forks Issues count

It’s a DAG all the way down!

sample graphtik plot

Lightweight computation graphs for Python

Graphtik is an an understandable and lightweight Python module for building, running and plotting graphs of functions (a.k.a pipelines).

  • The API posits a fair compromise between features and complexity, without precluding any.

  • It can be used as is to build machine learning pipelines for data science projects.

  • It should be extendable to act as the core for a custom ETL engine, a workflow-processor for interdependent files like GNU Make, or an Excel-like spreadsheet.

Quick start

Here’s how to install:

pip install graphtik

OR with various “extras” dependencies, such as, for plotting:

pip install graphtik[plot]
. Tip::

Supported extras:

plot

for plotting with Graphviz,

matplot

for plotting in maplotlib windows

sphinx

for embedding plots in sphinx-generated sites,

test

for running pytests,

dill

may help for pickling parallel tasks - see marshalling term and set_marshal_tasks() configuration.

all

all of the above, plus development libraries, eg black formatter.

dev

like all

Let’s build a graphtik computation graph that produces x3 outputs out of 2 inputs a and b:

  • a x b

  • a - a x b

  • |a - a x b| ^ 3

>>> from graphtik import compose, operation
>>> from operator import mul, sub
>>> @operation(name="abs qubed",
...            needs=["a_minus_ab"],
...            provides=["abs_a_minus_ab_cubed"])
... def abs_qubed(a):
...     return abs(a) ** 3

Compose the abspow function along the mul & sub built-ins into a computation graph:

>>> graphop = compose("graphop",
...     operation(needs=["a", "b"], provides=["ab"])(mul),
...     operation(needs=["a", "ab"], provides=["a_minus_ab"])(sub),
...     abs_qubed,
... )
>>> graphop
NetworkOperation('graphop', needs=['a', 'b', 'ab', 'a_minus_ab'],
                    provides=['ab', 'a_minus_ab', 'abs_a_minus_ab_cubed'],
                    x3 ops: mul, sub, abs qubed)

Run the graph and request all of the outputs:

>>> graphop(a=2, b=5)
{'a': 2, 'b': 5, 'ab': 10, 'a_minus_ab': -8, 'abs_a_minus_ab_cubed': 512}

… or request a subset of outputs:

>>> solution = graphop.compute({'a': 2, 'b': 5}, outputs=["a_minus_ab"])
>>> solution
{'a_minus_ab': -8}

… and plot the results (if in jupyter, no need to create the file):

>>> solution.plot('graphop.svg')    # doctest: +SKIP

sample graphtik plot graphtik legend

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

graphtik-7.1.1.tar.gz (122.7 kB view details)

Uploaded Source

Built Distribution

graphtik-7.1.1-py2.py3-none-any.whl (86.3 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file graphtik-7.1.1.tar.gz.

File metadata

  • Download URL: graphtik-7.1.1.tar.gz
  • Upload date:
  • Size: 122.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.0

File hashes

Hashes for graphtik-7.1.1.tar.gz
Algorithm Hash digest
SHA256 d304e129577a1cad97ad6f361a627c8c84ff13414832f597f0452b59b3993868
MD5 d9e566c260d035988b106df4b075ffba
BLAKE2b-256 0e736279f34ce42c12e1aa34b4e9263216c6582c46c52870d4e4a819d7bdd7f6

See more details on using hashes here.

File details

Details for the file graphtik-7.1.1-py2.py3-none-any.whl.

File metadata

  • Download URL: graphtik-7.1.1-py2.py3-none-any.whl
  • Upload date:
  • Size: 86.3 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.0

File hashes

Hashes for graphtik-7.1.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 ecf59c7e5ee2031f49c2f210817500089e5eb4db09199b2eebf54359c29e23bb
MD5 cc14dff91be69103981465073041fad3
BLAKE2b-256 df9924a6dd8199693095b7dda7ec9027cd4d2a9b8995b37c83d377802668202a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page