Skip to main content

A lightweight Python-3.6+ lib for solving & executing graphs of functions

Project description

Supported Python versions of latest release in PyPi Development Status Latest release in GitHub Latest version in PyPI (build-version: v8.0.0, build-date: 2020-05-06T23:22:59.950146) Travis continuous integration testing ok? (Linux) ReadTheDocs ok? cover-status Code Style Apache License, version 2.0

Github watchers Github stargazers Github forks Issues count

It’s a DAG all the way down!

sample graphtik plot

Lightweight computation graphs for Python

Graphtik is an an understandable and lightweight Python module for building, running and plotting graphs of functions (a.k.a pipelines).

  • The API posits a fair compromise between features and complexity, without precluding any.

  • It can be used as is to build machine learning pipelines for data science projects.

  • It should be extendable to act as the core for a custom ETL engine, a workflow-processor for interdependent files like GNU Make, or an Excel-like spreadsheet.

Quick start

Here’s how to install:

pip install graphtik

OR with various “extras” dependencies, such as, for plotting:

pip install graphtik[plot]
. Tip::

Supported extras:

plot

for plotting with Graphviz,

matplot

for plotting in maplotlib windows

sphinx

for embedding plots in sphinx-generated sites,

test

for running pytests,

dill

may help for pickling parallel tasks - see marshalling term and set_marshal_tasks() configuration.

all

all of the above, plus development libraries, eg black formatter.

dev

like all

Let’s build a graphtik computation graph that produces x3 outputs out of 2 inputs a and b:

  • a x b

  • a - a x b

  • |a - a x b| ^ 3

>>> from graphtik import compose, operation
>>> from operator import mul, sub
>>> @operation(name="abs qubed",
...            needs=["a_minus_ab"],
...            provides=["abs_a_minus_ab_cubed"])
... def abs_qubed(a):
...     return abs(a) ** 3

Compose the abspow function along the mul & sub built-ins into a computation graph:

>>> graphop = compose("graphop",
...     operation(needs=["a", "b"], provides=["ab"])(mul),
...     operation(needs=["a", "ab"], provides=["a_minus_ab"])(sub),
...     abs_qubed,
... )
>>> graphop
NetworkOperation('graphop', needs=['a', 'b', 'ab', 'a_minus_ab'],
                    provides=['ab', 'a_minus_ab', 'abs_a_minus_ab_cubed'],
                    x3 ops: mul, sub, abs qubed)

Run the graph and request all of the outputs:

>>> graphop(a=2, b=5)
{'a': 2, 'b': 5, 'ab': 10, 'a_minus_ab': -8, 'abs_a_minus_ab_cubed': 512}

… or request a subset of outputs:

>>> solution = graphop.compute({'a': 2, 'b': 5}, outputs=["a_minus_ab"])
>>> solution
{'a_minus_ab': -8}

… and plot the results (if in jupyter, no need to create the file):

>>> solution.plot('graphop.svg')    # doctest: +SKIP

sample graphtik plot graphtik legend

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

graphtik-8.0.0.tar.gz (125.4 kB view details)

Uploaded Source

Built Distribution

graphtik-8.0.0-py2.py3-none-any.whl (88.7 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file graphtik-8.0.0.tar.gz.

File metadata

  • Download URL: graphtik-8.0.0.tar.gz
  • Upload date:
  • Size: 125.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.0

File hashes

Hashes for graphtik-8.0.0.tar.gz
Algorithm Hash digest
SHA256 1a9eea01ba7ee37acb08a909d05653c29d3ee6bcbbf12ecf095feb98bd018686
MD5 b4b3329a39447df69eaab09f5a4a1160
BLAKE2b-256 5a428ce1048c713434c7d6a07205f5c075b56e4b278b7da8c0b3eab922f94638

See more details on using hashes here.

File details

Details for the file graphtik-8.0.0-py2.py3-none-any.whl.

File metadata

  • Download URL: graphtik-8.0.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 88.7 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.0

File hashes

Hashes for graphtik-8.0.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 d6eb20bf16e669c0451462f7f39ee7e4a974d7050a43cf0f2f7696fb6dc4b3ce
MD5 947dca8c5cdca706b372e8fa9cc44b9f
BLAKE2b-256 9dea510b1a65cf11a573c7012f8ded59d0bfacc86720599409f9ba27a479bdbb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page