Skip to main content

Python native companion module to the graspologic library

Project description

graspologic-native

graspologic-native is a companion library to graspologic. This module is a Python native module created by using the network_partitions crate from the same repository.

The purpose of this module is to provide a faster implementations of graph/network analysis algorithms in a native without trying to work through the troubles of releasing Rust crates and Python modules at the same time (in specific as the Python graspologic module is expected to be far more active than the Rust crates or native modules are).

The only capability currently implemented by this module is the Leiden algorithm, described in the paper From Louvain to Leiden: guaranteeing well-connected communities, Traag, V.A.; Waltman, L.; Van, Eck N.J., Scientific Reports, Vol. 9, 2019. In addition to the paper, the reference implementation provided at https://github.com/CWTSLeiden/networkanalysis was used as a starting point.

Releases

Builds are provided for x86_64 architectures only, for Windows, macOS, and Linux, for Python versions 3.6->3.9.

Build Tools

Rust nightly 1.37+ (we are currently using 1.40) The python package maturin

Please consider using graspologic in lieu of graspologic-native, as the former will contain some nice wrappers to make usage of this library more pythonic.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

graspologic_native-0.2.0_dev20210513840348589-cp39-none-win_amd64.whl (179.2 kB view details)

Uploaded CPython 3.9 Windows x86-64

graspologic_native-0.2.0_dev20210513840348589-cp39-cp39-manylinux_2_24_x86_64.whl (925.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ x86-64

graspologic_native-0.2.0_dev20210513840348589-cp39-cp39-macosx_10_7_x86_64.whl (281.0 kB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

graspologic_native-0.2.0_dev20210513840348589-cp38-none-win_amd64.whl (179.2 kB view details)

Uploaded CPython 3.8 Windows x86-64

graspologic_native-0.2.0_dev20210513840348589-cp38-cp38-manylinux_2_24_x86_64.whl (925.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ x86-64

graspologic_native-0.2.0_dev20210513840348589-cp38-cp38-macosx_10_7_x86_64.whl (281.0 kB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

graspologic_native-0.2.0_dev20210513840348589-cp37-none-win_amd64.whl (179.2 kB view details)

Uploaded CPython 3.7 Windows x86-64

graspologic_native-0.2.0_dev20210513840348589-cp37-cp37m-manylinux_2_24_x86_64.whl (925.2 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ x86-64

graspologic_native-0.2.0_dev20210513840348589-cp37-cp37m-macosx_10_7_x86_64.whl (281.0 kB view details)

Uploaded CPython 3.7m macOS 10.7+ x86-64

graspologic_native-0.2.0_dev20210513840348589-cp36-none-win_amd64.whl (179.3 kB view details)

Uploaded CPython 3.6 Windows x86-64

graspologic_native-0.2.0_dev20210513840348589-cp36-cp36m-manylinux_2_24_x86_64.whl (925.6 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.24+ x86-64

graspologic_native-0.2.0_dev20210513840348589-cp36-cp36m-macosx_10_7_x86_64.whl (281.1 kB view details)

Uploaded CPython 3.6m macOS 10.7+ x86-64

File details

Details for the file graspologic_native-0.2.0_dev20210513840348589-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for graspologic_native-0.2.0_dev20210513840348589-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 9ef3352c92df09098e456139617f5c5347e0c0f46e4d48a36c47d214108637d3
MD5 8b316e323211ab82ded6f922a8bdf5a7
BLAKE2b-256 e840f6de2ff760bb0d44edd793cf19798456db931f1c447742f055ec1336cb86

See more details on using hashes here.

File details

Details for the file graspologic_native-0.2.0_dev20210513840348589-cp39-cp39-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for graspologic_native-0.2.0_dev20210513840348589-cp39-cp39-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 f7043c99b292cd47f50af3d3ae00f19f8079b48cc4249de00b8c9994b06724fa
MD5 f1aabc0665d4f4109303e0c22946a591
BLAKE2b-256 221888ff394eaadcfd31302f0daeb6ff4191a3ee3f973b475757a67172e2011e

See more details on using hashes here.

File details

Details for the file graspologic_native-0.2.0_dev20210513840348589-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for graspologic_native-0.2.0_dev20210513840348589-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 3f16ca0daf1faddc485ddf2d072f50ce7a516349bd9917d16d58e7e4a016a18b
MD5 09a813ee4c0f39063eb98155cc54a8a5
BLAKE2b-256 289f5f08d0d77b2a06eb4c7abcc87742d92bddcc6fee52e46d54c44b80209abd

See more details on using hashes here.

File details

Details for the file graspologic_native-0.2.0_dev20210513840348589-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for graspologic_native-0.2.0_dev20210513840348589-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 6ad2922079b2ea28f706b572effa1da8f796c01f2316a0383bb61ca7a3b7cd36
MD5 ce8a9c7e8a294bc051a7de700bb64882
BLAKE2b-256 fc56271091470fcc9dfb7d13f65d3ecdd6b4c39ff32c9383a3d3cca4c6693528

See more details on using hashes here.

File details

Details for the file graspologic_native-0.2.0_dev20210513840348589-cp38-cp38-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for graspologic_native-0.2.0_dev20210513840348589-cp38-cp38-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 1f1e28974087d80e29410169081bf7c8a0066cc1c3f73070842b3085ee84f847
MD5 2db64e3bd5af0ae29e99d5b97d171287
BLAKE2b-256 7bac5db965a4707c7141400e917b8cb3e6973a4429a6303ee691238ab186a283

See more details on using hashes here.

File details

Details for the file graspologic_native-0.2.0_dev20210513840348589-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for graspologic_native-0.2.0_dev20210513840348589-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 68bc0d09626c50cae1f054462b36e6319c9b6197d5d835e0198766ba8be2d5bf
MD5 ea1f591787a0984d78076b5e91db4703
BLAKE2b-256 38ed7de51c4e31dc1ac8497f13045b5eb33eb544a29aeb948d13eb9eeed58ee7

See more details on using hashes here.

File details

Details for the file graspologic_native-0.2.0_dev20210513840348589-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for graspologic_native-0.2.0_dev20210513840348589-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 8d04ec6eb7f3cec5e14e9ace12578debbac5db7f42e097f2d6508049f519c618
MD5 ec8a7a789d4e32f03f7b7f25e2ce8991
BLAKE2b-256 15e7be98253c53e61b5cddb7b05bf21baf52fa76d3e8388c24fcbf1a01c1cc80

See more details on using hashes here.

File details

Details for the file graspologic_native-0.2.0_dev20210513840348589-cp37-cp37m-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for graspologic_native-0.2.0_dev20210513840348589-cp37-cp37m-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 e4ecb06ee4866af4252849b89f73f84073cd7f803cb5a37ede6abdb16e655dfe
MD5 4332350da890124668b4b71ffb7c6ee8
BLAKE2b-256 8b9884f976879e34a85446872af7bc570e61c942f43930c696b5a453bb363c86

See more details on using hashes here.

File details

Details for the file graspologic_native-0.2.0_dev20210513840348589-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for graspologic_native-0.2.0_dev20210513840348589-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 724bff50f4aee4d20cc0a13cd46ea4f7c750c0c98e20917929c589b9f2b0086e
MD5 68cc194805dcfa6d63e962d89cde7f55
BLAKE2b-256 66c310a3a58d8b25f0ed24546568cabab9a1e59cdb3f151c51fdc9bfb7bc2521

See more details on using hashes here.

File details

Details for the file graspologic_native-0.2.0_dev20210513840348589-cp36-none-win_amd64.whl.

File metadata

File hashes

Hashes for graspologic_native-0.2.0_dev20210513840348589-cp36-none-win_amd64.whl
Algorithm Hash digest
SHA256 e15453308a4e608206a4df8a167743ba99489d596a599b1a8d93435b7bcdc126
MD5 b1d4ac35e2df547b0ba289111ef89bc3
BLAKE2b-256 5ba4f6511e3d07b77e20e21882924c7d08832fb246fe3d753f00854dc827b467

See more details on using hashes here.

File details

Details for the file graspologic_native-0.2.0_dev20210513840348589-cp36-cp36m-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for graspologic_native-0.2.0_dev20210513840348589-cp36-cp36m-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 58585ca1d3d0d56df1e3b1471fd780d2944712b2c56d118f4424c680283fcfc8
MD5 f738d3eb530dbcdc8522789a3c4c4c7c
BLAKE2b-256 98f3da09919f29f2856a7d3dbc2abf6bb10f8627540f46509c71cae9a0812ef0

See more details on using hashes here.

File details

Details for the file graspologic_native-0.2.0_dev20210513840348589-cp36-cp36m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for graspologic_native-0.2.0_dev20210513840348589-cp36-cp36m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 d5871ea5523a45b5e2296b741aa4256887eced7c9c394a1fa0e1dc0fb9d766b4
MD5 08206d57ba3a02168257c84930d5553b
BLAKE2b-256 dc8957058fc8b68129c86477e9c7771793e5a273640001df8494d1c073ce8b4e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page