Skip to main content

Python native companion module to the graspologic library

Project description

graspologic-native

graspologic-native is a companion library to graspologic. This module is a Python native module created by using the network_partitions crate from the same repository.

The purpose of this module is to provide a faster implementations of graph/network analysis algorithms in a native without trying to work through the troubles of releasing Rust crates and Python modules at the same time (in specific as the Python graspologic module is expected to be far more active than the Rust crates or native modules are).

The only capability currently implemented by this module is the Leiden algorithm, described in the paper From Louvain to Leiden: guaranteeing well-connected communities, Traag, V.A.; Waltman, L.; Van, Eck N.J., Scientific Reports, Vol. 9, 2019. In addition to the paper, the reference implementation provided at https://github.com/CWTSLeiden/networkanalysis was used as a starting point.

Releases

Builds are provided for x86_64 architectures only, for Windows, macOS, and Linux, for Python versions 3.6->3.9.

Build Tools

Rust nightly 1.37+ (we are currently using 1.40) The python package maturin

Please consider using graspologic in lieu of graspologic-native, as the former will contain some nice wrappers to make usage of this library more pythonic.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

graspologic_native-1.0.0_dev20210518854580130-cp39-none-win_amd64.whl (179.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

graspologic_native-1.0.0_dev20210518854580130-cp39-cp39-manylinux_2_24_x86_64.whl (927.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ x86-64

graspologic_native-1.0.0_dev20210518854580130-cp39-cp39-macosx_10_7_x86_64.whl (282.3 kB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

graspologic_native-1.0.0_dev20210518854580130-cp38-none-win_amd64.whl (179.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

graspologic_native-1.0.0_dev20210518854580130-cp38-cp38-manylinux_2_24_x86_64.whl (927.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ x86-64

graspologic_native-1.0.0_dev20210518854580130-cp38-cp38-macosx_10_7_x86_64.whl (282.3 kB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

graspologic_native-1.0.0_dev20210518854580130-cp37-none-win_amd64.whl (179.9 kB view details)

Uploaded CPython 3.7 Windows x86-64

graspologic_native-1.0.0_dev20210518854580130-cp37-cp37m-manylinux_2_24_x86_64.whl (927.2 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ x86-64

graspologic_native-1.0.0_dev20210518854580130-cp37-cp37m-macosx_10_7_x86_64.whl (282.4 kB view details)

Uploaded CPython 3.7m macOS 10.7+ x86-64

graspologic_native-1.0.0_dev20210518854580130-cp36-none-win_amd64.whl (180.0 kB view details)

Uploaded CPython 3.6 Windows x86-64

graspologic_native-1.0.0_dev20210518854580130-cp36-cp36m-manylinux_2_24_x86_64.whl (927.6 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.24+ x86-64

graspologic_native-1.0.0_dev20210518854580130-cp36-cp36m-macosx_10_7_x86_64.whl (282.6 kB view details)

Uploaded CPython 3.6m macOS 10.7+ x86-64

File details

Details for the file graspologic_native-1.0.0_dev20210518854580130-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for graspologic_native-1.0.0_dev20210518854580130-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 03884953b17798d94ecaa8ae6509ef1bb47bee60657e5554b9c691a7600cb0e4
MD5 55de30b603eddfb4810d797f4ded5e25
BLAKE2b-256 0c65fdb82f0202747982a6b294b1e280572455212217b65e83227bd2f9fb5492

See more details on using hashes here.

File details

Details for the file graspologic_native-1.0.0_dev20210518854580130-cp39-cp39-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for graspologic_native-1.0.0_dev20210518854580130-cp39-cp39-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 a2260f4acce6630bf7b4ec2f944ec300216e3ec5d45314dd05b957a269cba00d
MD5 162ef88a2b3803614242a12c8852c4c5
BLAKE2b-256 41d92d86b989a397ab7f49d09685fcccb4ac03e469d75164642c61bf8009b068

See more details on using hashes here.

File details

Details for the file graspologic_native-1.0.0_dev20210518854580130-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for graspologic_native-1.0.0_dev20210518854580130-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 2515d2644a746a5831c8ef3ea3017e544583157d57110df30680fcd949840d68
MD5 f244bdcb81bd82e131eedecd518e17c4
BLAKE2b-256 c20a4c4c422dc8c8e0993f0ab9cbbe0f8b7878e681f4e12043b2a94188d2c431

See more details on using hashes here.

File details

Details for the file graspologic_native-1.0.0_dev20210518854580130-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for graspologic_native-1.0.0_dev20210518854580130-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 c74166e662774b7c682eabdf36ff899f69e9ffbf501dcc62b36d66d0b68c6134
MD5 228972396593999202ed306777d90e1a
BLAKE2b-256 0e0d4aee5267970eece4df34222a3b46d4dea4170dce4a02bcb879d471902614

See more details on using hashes here.

File details

Details for the file graspologic_native-1.0.0_dev20210518854580130-cp38-cp38-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for graspologic_native-1.0.0_dev20210518854580130-cp38-cp38-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 8695ec3ec3434de8fdd3dd0a1276b70d6179794b9b38f02f792d152ab0bb2599
MD5 7947714800fb13859c263d7f0d14fed7
BLAKE2b-256 0e50bdc943264d2b70e6a1a01d94c740ac1fe4c476d952f9bb6c313a46cfe802

See more details on using hashes here.

File details

Details for the file graspologic_native-1.0.0_dev20210518854580130-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for graspologic_native-1.0.0_dev20210518854580130-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 9be49605c7a77a1675da7a5a5b1a3e5acbe0d534b53b8c198a7456184deef34d
MD5 3a8be08bf354a8448d2092ee0c724411
BLAKE2b-256 d391eebd6561f3f1fb76eb619c9a133c0b3941cce870c0733115b7f3da8d9cff

See more details on using hashes here.

File details

Details for the file graspologic_native-1.0.0_dev20210518854580130-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for graspologic_native-1.0.0_dev20210518854580130-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 01d9fe21eca031f66ce0a35f9262e2a15e392e634fbccaaae334509a54b4c2e0
MD5 b1115d5a96225aab6fa4117759f5bc53
BLAKE2b-256 9b3b42e558d1a261e2249ada2fd1545dac3a59d2ccba0f94bfe0f8d03f168278

See more details on using hashes here.

File details

Details for the file graspologic_native-1.0.0_dev20210518854580130-cp37-cp37m-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for graspologic_native-1.0.0_dev20210518854580130-cp37-cp37m-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 179f3fe3f41d928b034008019e4a06c2bee1403b03910caa79b5dcf301bf3283
MD5 fa4c2db808b86de750da07cb52625325
BLAKE2b-256 d4abea2a03a6d64251bd32d10e6277c36334d62b377e2716b06a2442427dbdaf

See more details on using hashes here.

File details

Details for the file graspologic_native-1.0.0_dev20210518854580130-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for graspologic_native-1.0.0_dev20210518854580130-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 6a08798815eac39d7fc16238d0548d8913c7f3ea7d760634c7970e270a45cbd7
MD5 4ad29b1ea8bd3a290fdb936e971cc331
BLAKE2b-256 0a7aed693448c5d75879ec553e9814c737515232cb63209041f38e58e91c1488

See more details on using hashes here.

File details

Details for the file graspologic_native-1.0.0_dev20210518854580130-cp36-none-win_amd64.whl.

File metadata

File hashes

Hashes for graspologic_native-1.0.0_dev20210518854580130-cp36-none-win_amd64.whl
Algorithm Hash digest
SHA256 1db4c4d2a08490f7a229506245ae9fd021debf07327f2e50c170a840a3cce238
MD5 386a4558d4c32978880d1449a852c83a
BLAKE2b-256 2b0daa3956db490cf1ad4090a30c8a0159f67031030cb3ca3005c864dee9676c

See more details on using hashes here.

File details

Details for the file graspologic_native-1.0.0_dev20210518854580130-cp36-cp36m-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for graspologic_native-1.0.0_dev20210518854580130-cp36-cp36m-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 e4b15ef6a63b8738750904b2478d35e992f4b6eb4022a57a577f1218439ba7db
MD5 7bc2608b021719b69de9db7440dff683
BLAKE2b-256 91cbaed123f54088696c34548e4c0cfadecb98e3a19e7e65ddc7b955f15e8ce5

See more details on using hashes here.

File details

Details for the file graspologic_native-1.0.0_dev20210518854580130-cp36-cp36m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for graspologic_native-1.0.0_dev20210518854580130-cp36-cp36m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 ba055987a8d9a5b0c9bb2812e516f3fb578dd9cc1dc3277b410a97229a56a248
MD5 4e9c5cffb374e8da6224feb700b88bee
BLAKE2b-256 42058ead57e206f8f9db813525dc92810baebe1b8f53630e126559f59848e636

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page