Skip to main content

Python native companion module to the graspologic library

Project description

graspologic-native

graspologic-native is a companion library to graspologic. This module is a Python native module created by using the network_partitions crate from the same repository.

The purpose of this module is to provide a faster implementations of graph/network analysis algorithms in a native without trying to work through the troubles of releasing Rust crates and Python modules at the same time (in specific as the Python graspologic module is expected to be far more active than the Rust crates or native modules are).

The only capability currently implemented by this module is the Leiden algorithm, described in the paper From Louvain to Leiden: guaranteeing well-connected communities, Traag, V.A.; Waltman, L.; Van, Eck N.J., Scientific Reports, Vol. 9, 2019. In addition to the paper, the reference implementation provided at https://github.com/CWTSLeiden/networkanalysis was used as a starting point.

Releases

Builds are provided for x86_64 architectures only, for Windows, macOS, and Linux, for Python versions 3.6->3.9.

Build Tools

Rust nightly 1.37+ (we are currently using 1.40) The python package maturin

Please consider using graspologic in lieu of graspologic-native, as the former will contain some nice wrappers to make usage of this library more pythonic.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

graspologic_native-1.0.0_dev202109021195280431-cp39-none-win_amd64.whl (185.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

graspologic_native-1.0.0_dev202109021195280431-cp39-cp39-manylinux_2_24_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ x86-64

graspologic_native-1.0.0_dev202109021195280431-cp39-cp39-macosx_10_7_x86_64.whl (295.2 kB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

graspologic_native-1.0.0_dev202109021195280431-cp38-none-win_amd64.whl (185.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

graspologic_native-1.0.0_dev202109021195280431-cp38-cp38-manylinux_2_24_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ x86-64

graspologic_native-1.0.0_dev202109021195280431-cp38-cp38-macosx_10_7_x86_64.whl (295.1 kB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

graspologic_native-1.0.0_dev202109021195280431-cp37-none-win_amd64.whl (185.7 kB view details)

Uploaded CPython 3.7 Windows x86-64

graspologic_native-1.0.0_dev202109021195280431-cp37-cp37m-manylinux_2_24_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ x86-64

graspologic_native-1.0.0_dev202109021195280431-cp37-cp37m-macosx_10_7_x86_64.whl (295.2 kB view details)

Uploaded CPython 3.7m macOS 10.7+ x86-64

graspologic_native-1.0.0_dev202109021195280431-cp36-none-win_amd64.whl (185.9 kB view details)

Uploaded CPython 3.6 Windows x86-64

graspologic_native-1.0.0_dev202109021195280431-cp36-cp36m-manylinux_2_24_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.24+ x86-64

graspologic_native-1.0.0_dev202109021195280431-cp36-cp36m-macosx_10_7_x86_64.whl (295.3 kB view details)

Uploaded CPython 3.6m macOS 10.7+ x86-64

File details

Details for the file graspologic_native-1.0.0_dev202109021195280431-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for graspologic_native-1.0.0_dev202109021195280431-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 a3cf55b06b2a632b6925f78309dea589ab6d40e28f2e190dfd5f5d29ccc7f223
MD5 129f8d0dfa11276ae06e613329f2b724
BLAKE2b-256 bab576d5d21becbd99eb1868202fe0fe7a85da1d26647802f50ea354be390907

See more details on using hashes here.

File details

Details for the file graspologic_native-1.0.0_dev202109021195280431-cp39-cp39-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for graspologic_native-1.0.0_dev202109021195280431-cp39-cp39-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 775ec22d77cfa5540269c8f6a11396d3ec019903a9ff9e2673abe6db44e502af
MD5 b24bef4d58268c4df104e5957f87c62a
BLAKE2b-256 9f66155881af517cb5c26e5099598c5c229a9ea084b8a6c80383e03b0b830bee

See more details on using hashes here.

File details

Details for the file graspologic_native-1.0.0_dev202109021195280431-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for graspologic_native-1.0.0_dev202109021195280431-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 c227eaf6cd9a37bdc171179e408ef25417357e88e1cae0575100ff54c6328b82
MD5 405ba9175e4f1b478f5fd3bf7fb4fccd
BLAKE2b-256 e0e768fd70eb0538cbe4dc2f6e18c206ab76c0f1ff94bacd9251188ac233a888

See more details on using hashes here.

File details

Details for the file graspologic_native-1.0.0_dev202109021195280431-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for graspologic_native-1.0.0_dev202109021195280431-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 f82e7c1bdc0c5deb08dc88f0c68c860f9d9363aba038fec09dd9ae061f16a147
MD5 ba2e9969fd4a5434665640b2ecb0044c
BLAKE2b-256 cb8de9900264dc9306a8f9c6a7d08212fa42192650d15a848c28d7d7741f9122

See more details on using hashes here.

File details

Details for the file graspologic_native-1.0.0_dev202109021195280431-cp38-cp38-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for graspologic_native-1.0.0_dev202109021195280431-cp38-cp38-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 1e4889b4696b15f9066032b778e79a7b3613e546d25a6577d5f77d5f31eeaabd
MD5 d50dde30257134f86e63a8095ebf0fa6
BLAKE2b-256 a856a65341e7be9c91836f1e783872d1b9b6416ad39fb26bcc541b7a95663a14

See more details on using hashes here.

File details

Details for the file graspologic_native-1.0.0_dev202109021195280431-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for graspologic_native-1.0.0_dev202109021195280431-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 56b38c136bbe5f7ad725454b179bd9ba9a56d1485239a0840a83a06ba0debaf8
MD5 0f5704794cb13451056185ee4d146b27
BLAKE2b-256 0b15ac25bd79a11073df1f4f876f58296fe518032b0c5e8516101d054c8f3f8e

See more details on using hashes here.

File details

Details for the file graspologic_native-1.0.0_dev202109021195280431-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for graspologic_native-1.0.0_dev202109021195280431-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 f19bdc14b4ea1a5d439bcf14c165b4d672f8cc8e88760d27886da3590f602eeb
MD5 0395c2c4c5fa54b08b015da03ab674d8
BLAKE2b-256 675311c4939de2341bb7c04877b6cf986d14e30a9c6682c7e14588184225c774

See more details on using hashes here.

File details

Details for the file graspologic_native-1.0.0_dev202109021195280431-cp37-cp37m-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for graspologic_native-1.0.0_dev202109021195280431-cp37-cp37m-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 6040153aa58872c0d821487d08c59fdf9ac1565ce9208e7b0e049f744bdd7661
MD5 b59f6078bf018c6479e0f706bbc9da24
BLAKE2b-256 27ae072a24446cbcb4934f0c8405d1126bb326b95ae4fe4408b6224131b3d6dd

See more details on using hashes here.

File details

Details for the file graspologic_native-1.0.0_dev202109021195280431-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for graspologic_native-1.0.0_dev202109021195280431-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 8b7cda01f1cbb3aa5b31b9969ec524bd8753a32b22b066590560778cd0309158
MD5 e7d3b43a4daf3d220fa350a044f84cf6
BLAKE2b-256 d7bf427327e50acbd2a132f6f556344b41910ff9e5193d1ac25f835708f90cb6

See more details on using hashes here.

File details

Details for the file graspologic_native-1.0.0_dev202109021195280431-cp36-none-win_amd64.whl.

File metadata

File hashes

Hashes for graspologic_native-1.0.0_dev202109021195280431-cp36-none-win_amd64.whl
Algorithm Hash digest
SHA256 c1a9c9d8a6c4791e92f2f0b71e30397b07672b91795479decde3e447862e21f0
MD5 df377920494f3c9cd362d0b6ba23689b
BLAKE2b-256 b12a6d85ecd2a6b125320c529fc282308cd27ccc0ace28bc632e84f2638be834

See more details on using hashes here.

File details

Details for the file graspologic_native-1.0.0_dev202109021195280431-cp36-cp36m-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for graspologic_native-1.0.0_dev202109021195280431-cp36-cp36m-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 e0234767a3eb773bdaa0ecfbc7d70b7a923eae67a712d4ce24bd7efedd5828e3
MD5 4d690bf81f5cd79188af407e5db885e1
BLAKE2b-256 f6e32c5c4ebb6fa8d83ddab5f1079dc7f8e82346bf619779df475ae947240605

See more details on using hashes here.

File details

Details for the file graspologic_native-1.0.0_dev202109021195280431-cp36-cp36m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for graspologic_native-1.0.0_dev202109021195280431-cp36-cp36m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 2d2a993630cd3b8c0fe52d8bd9e6d6125330d5bdf95fc36b6215c43f2733e65d
MD5 9442eb3fa922f0cb0a9379ef4146ca37
BLAKE2b-256 41b858ccbc75c5303472ef8d5a140bcfc31d654bbe7a7303e075ce5998898550

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page