Skip to main content

Python native companion module to the graspologic library

Project description

graspologic-native

graspologic-native is a companion library to graspologic. This module is a Python native module created by using the network_partitions crate from the same repository.

The purpose of this module is to provide a faster implementations of graph/network analysis algorithms in a native without trying to work through the troubles of releasing Rust crates and Python modules at the same time (in specific as the Python graspologic module is expected to be far more active than the Rust crates or native modules are).

The only capability currently implemented by this module is the Leiden algorithm, described in the paper From Louvain to Leiden: guaranteeing well-connected communities, Traag, V.A.; Waltman, L.; Van, Eck N.J., Scientific Reports, Vol. 9, 2019. In addition to the paper, the reference implementation provided at https://github.com/CWTSLeiden/networkanalysis was used as a starting point.

Releases

Builds are provided for x86_64 architectures only, for Windows, macOS, and Linux, for Python versions 3.6->3.9.

Build Tools

Rust nightly 1.37+ (we are currently using 1.40) The python package maturin

Please consider using graspologic in lieu of graspologic-native, as the former will contain some nice wrappers to make usage of this library more pythonic.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

graspologic_native-1.0.0_dev202109021195306530-cp39-none-win_amd64.whl (185.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

graspologic_native-1.0.0_dev202109021195306530-cp39-cp39-manylinux_2_24_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.24+ x86-64

graspologic_native-1.0.0_dev202109021195306530-cp39-cp39-macosx_10_7_x86_64.whl (295.1 kB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

graspologic_native-1.0.0_dev202109021195306530-cp38-none-win_amd64.whl (185.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

graspologic_native-1.0.0_dev202109021195306530-cp38-cp38-manylinux_2_24_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.24+ x86-64

graspologic_native-1.0.0_dev202109021195306530-cp38-cp38-macosx_10_7_x86_64.whl (295.1 kB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

graspologic_native-1.0.0_dev202109021195306530-cp37-none-win_amd64.whl (185.8 kB view details)

Uploaded CPython 3.7 Windows x86-64

graspologic_native-1.0.0_dev202109021195306530-cp37-cp37m-manylinux_2_24_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.24+ x86-64

graspologic_native-1.0.0_dev202109021195306530-cp37-cp37m-macosx_10_7_x86_64.whl (295.1 kB view details)

Uploaded CPython 3.7m macOS 10.7+ x86-64

graspologic_native-1.0.0_dev202109021195306530-cp36-none-win_amd64.whl (186.0 kB view details)

Uploaded CPython 3.6 Windows x86-64

graspologic_native-1.0.0_dev202109021195306530-cp36-cp36m-manylinux_2_24_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.24+ x86-64

graspologic_native-1.0.0_dev202109021195306530-cp36-cp36m-macosx_10_7_x86_64.whl (295.3 kB view details)

Uploaded CPython 3.6m macOS 10.7+ x86-64

File details

Details for the file graspologic_native-1.0.0_dev202109021195306530-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for graspologic_native-1.0.0_dev202109021195306530-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 e96401ee32a8159108bb1f7cd59fd3c14c94cbafaea0289b94303e9106c81c2f
MD5 a5e4db70471f26e477289a3d115f6cc8
BLAKE2b-256 23035490fc1309bb5ed40770874d2912a04e94b8f32a0dfa4a62aa5e424fac07

See more details on using hashes here.

File details

Details for the file graspologic_native-1.0.0_dev202109021195306530-cp39-cp39-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for graspologic_native-1.0.0_dev202109021195306530-cp39-cp39-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 182c4dc3b341297b2388c46598c1726ef3e2e7e38792e28fc2f4778ba5d6836b
MD5 12873724bbca245f0e15222e12e2016a
BLAKE2b-256 7e1fdb787f1d09be4b1e73fe29b7d0ffd6b0b2971de3c895f8aec03065215e72

See more details on using hashes here.

File details

Details for the file graspologic_native-1.0.0_dev202109021195306530-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for graspologic_native-1.0.0_dev202109021195306530-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 5be162355090eed6634d8ad9b60c51cc7b772aa3dd0e1cc8df6de9b7d38bdb00
MD5 4977bbe63672c0162470f993eee22b71
BLAKE2b-256 0a71885e8e7a95e9296ae3a5ee11d9ee8b40d736d9c5861ef0aeb955b5a8fbe5

See more details on using hashes here.

File details

Details for the file graspologic_native-1.0.0_dev202109021195306530-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for graspologic_native-1.0.0_dev202109021195306530-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 d8efb8d5550a8647aaa2f1798ee8b4f50415c14ad4708db646216351614deee4
MD5 64add99ebefb236327a8ff876994735a
BLAKE2b-256 d486403f298f09db445af8ff6725e64ddbb742959606322a8bd0f9bd4fb7f69b

See more details on using hashes here.

File details

Details for the file graspologic_native-1.0.0_dev202109021195306530-cp38-cp38-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for graspologic_native-1.0.0_dev202109021195306530-cp38-cp38-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 4749f9ed8f090c02a9dd5a8e85e09487f146fd7338ab9bf32da49258c3ce1a41
MD5 36da112775d01096c6d7fe0421361d3e
BLAKE2b-256 aefe80d016a79eefe82e0fa301a7c6db936e00518025d5e28fbff56de1198172

See more details on using hashes here.

File details

Details for the file graspologic_native-1.0.0_dev202109021195306530-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for graspologic_native-1.0.0_dev202109021195306530-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 c7bdc1f51b7ec19f32b9b89f9d1db3644ad3bd069fafd1984e344541ce33e8b5
MD5 1ee1e264556f0f8c0383cc6e2b58a65b
BLAKE2b-256 4f100e7344816ad6146269a1d2a34d57de8e6c18dbfe98071a4cdddf37c2705a

See more details on using hashes here.

File details

Details for the file graspologic_native-1.0.0_dev202109021195306530-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for graspologic_native-1.0.0_dev202109021195306530-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 0891eee4fb8c1064dcadb36667a0de684792222651b7656881190e57be86c5f3
MD5 73dc5a5e98710fba52d7ea89ba73a63f
BLAKE2b-256 10b1e204f908cd1c0513da442a7192d84becbecf1e92816a78a684d61adf3f73

See more details on using hashes here.

File details

Details for the file graspologic_native-1.0.0_dev202109021195306530-cp37-cp37m-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for graspologic_native-1.0.0_dev202109021195306530-cp37-cp37m-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 c88cd8552798ccd973f5a277b3179270831f9587798374cb3cc2e78877a10c59
MD5 83e597170703d529394190fdacc70b2d
BLAKE2b-256 205915e3fcbf1aa5521c446dc2e6577a1f4f16918498916a4e8784752747a6eb

See more details on using hashes here.

File details

Details for the file graspologic_native-1.0.0_dev202109021195306530-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for graspologic_native-1.0.0_dev202109021195306530-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 d1d19f65204f905cfe83864afaa1cd962bcf50584e8913f6996b9b33e90fbe4f
MD5 08bd87d13673808e407deb7e784a59c4
BLAKE2b-256 e72bc54588b3d21f757cd1010a307aa47d9b0fbed730fd7e8647bfa8ded32e37

See more details on using hashes here.

File details

Details for the file graspologic_native-1.0.0_dev202109021195306530-cp36-none-win_amd64.whl.

File metadata

File hashes

Hashes for graspologic_native-1.0.0_dev202109021195306530-cp36-none-win_amd64.whl
Algorithm Hash digest
SHA256 494cc464924cbd2d0a1f784b8d8208e3005981c2d81738479416c26fc873694b
MD5 4c5fc8f976a458bdc3274137c6f4da58
BLAKE2b-256 feb5ab91334a370988e14d67ed8d553fcc98e9cad381bd2925f61af4d4e57868

See more details on using hashes here.

File details

Details for the file graspologic_native-1.0.0_dev202109021195306530-cp36-cp36m-manylinux_2_24_x86_64.whl.

File metadata

File hashes

Hashes for graspologic_native-1.0.0_dev202109021195306530-cp36-cp36m-manylinux_2_24_x86_64.whl
Algorithm Hash digest
SHA256 a1b1220664f32ec72b82c522ed9b68676181b687ddcec8a4fb87cdce26ca8805
MD5 2c29c0c7bf01a433a7fb3a421ca91e2b
BLAKE2b-256 89b3ed7ececd46baa195d4bab8ac05c66bb65e967bef4fd372b096265cbb6589

See more details on using hashes here.

File details

Details for the file graspologic_native-1.0.0_dev202109021195306530-cp36-cp36m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for graspologic_native-1.0.0_dev202109021195306530-cp36-cp36m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 7cf9e7198ebc803ca492ce57dbedb68c4e3959a72b89bfd0f215cae3da63f499
MD5 49118cee8a5c5395585c0e28fc68d7b8
BLAKE2b-256 371b70ef614a4eec309ed9a5f1626b5a6a4487f96a68f678401d8ca541f2e402

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page